Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE J Biomed Health Inform ; 25(7): 2595-2603, 2021 07.
Article in English | MEDLINE | ID: mdl-33373309

ABSTRACT

Listening to lung sounds through auscultation is vital in examining the respiratory system for abnormalities. Automated analysis of lung auscultation sounds can be beneficial to the health systems in low-resource settings where there is a lack of skilled physicians. In this work, we propose a lightweight convolutional neural network (CNN) architecture to classify respiratory diseases from individual breath cycles using hybrid scalogram-based features of lung sounds. The proposed feature-set utilizes the empirical mode decomposition (EMD) and the continuous wavelet transform (CWT). The performance of the proposed scheme is studied using a patient independent train-validation-test set from the publicly available ICBHI 2017 lung sound dataset. Employing the proposed framework, weighted accuracy scores of 98.92% for three-class chronic classification and 98.70% for six-class pathological classification are achieved, which outperform well-known and much larger VGG16 in terms of accuracy by absolute margins of 1.10% and 1.11%, respectively. The proposed CNN model also outperforms other contemporary lightweight models while being computationally comparable.


Subject(s)
Respiratory Sounds , Wavelet Analysis , Auscultation , Humans , Lung , Neural Networks, Computer
2.
IEEE Trans Industr Inform ; 17(9): 6489-6498, 2021 Sep.
Article in English | MEDLINE | ID: mdl-37981913

ABSTRACT

Rapid and precise diagnosis of COVID-19 is one of the major challenges faced by the global community to control the spread of this overgrowing pandemic. In this article, a hybrid neural network is proposed, named CovTANet, to provide an end-to-end clinical diagnostic tool for early diagnosis, lesion segmentation, and severity prediction of COVID-19 utilizing chest computer tomography (CT) scans. A multiphase optimization strategy is introduced for solving the challenges of complicated diagnosis at a very early stage of infection, where an efficient lesion segmentation network is optimized initially, which is later integrated into a joint optimization framework for the diagnosis and severity prediction tasks providing feature enhancement of the infected regions. Moreover, for overcoming the challenges with diffused, blurred, and varying shaped edges of COVID lesions with novel and diverse characteristics, a novel segmentation network is introduced, namely tri-level attention-based segmentation network. This network has significantly reduced semantic gaps in subsequent encoding-decoding stages, with immense parallelization of multiscale features for faster convergence providing considerable performance improvement over traditional networks. Furthermore, a novel tri-level attention mechanism has been introduced, which is repeatedly utilized over the network, combining channel, spatial, and pixel attention schemes for faster and efficient generalization of contextual information embedded in the feature map through feature recalibration and enhancement operations. Outstanding performances have been achieved in all three tasks through extensive experimentation on a large publicly available dataset containing 1110 chest CT-volumes, which signifies the effectiveness of the proposed scheme at the current stage of the pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL
...