Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(50): 109453-109468, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37924166

ABSTRACT

Mixed matrix membranes (MMMs) containing metal-organic frameworks (MOFs) have been an emerging and promising membrane technology to contribute to different gas separation applications including carbon dioxide (CO2) and oxygen (O2) separation, because of their large surface areas and distinctive gas adsorption features. In this work, the fabrication process of Polydimethylsiloxane (PDMS)-based MMMs was reported, in which 0.5 to 2 wt.% of each type of (Cu, Ni)-based MOF-74 variants were incorporated into a PDMS matrix in order to achieve high CO2/N2, O2/N2, and CO2/O2 separation efficiency. These MMMs and their nanofillers (MOF-74) were extensively characterized using scanning electron microscopy (SEM) along with Energy Dispersive X-Ray (EDX) mapping, X-ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), a single gas permeation testing system, and an ultimate tensile strength testing (UTS) unit in order to gain insight into their properties in relation to their gas separation performance. The 1 wt.% of both (Cu and Ni)-MOF-74@PDMS were selected as the most optimum MMMs due to their uniform morphology and enhanced tensile strength, which exhibited high CO2 permeabilities of 4432 Barrer (37.9% increase) and 4288 Barrer (33.5% increase), respectively. Furthermore, in the case of 1 wt.% Ni-MOF-74@PDMS, the CO2/N2, O2/N2, and CO2/O2 selectivities were also enhanced to 36.2 (141.6% increase), 3.2 (21.9% increase), and 11.25 (98.1% increase), respectively. While, in the case of 1 wt.% Cu-MOF-74@PDMS the CO2/N2 and O2/N2 selectivities showed an increment up-to 94.7 (531.5% increase) and 6.47 (145% increase), respectively, Whereas, at 0.5 wt.%, Cu-MOF-74@PDMS showed the best CO2/O2 selectivity of 25.26 (344.7% increase).


Subject(s)
Carbon Dioxide , Dimethylpolysiloxanes , Spectroscopy, Fourier Transform Infrared , Adsorption , Oxygen
2.
Comput Biol Med ; 166: 107555, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37806061

ABSTRACT

In domains such as medical and healthcare, the interpretability and explainability of machine learning and artificial intelligence systems are crucial for building trust in their results. Errors caused by these systems, such as incorrect diagnoses or treatments, can have severe and even life-threatening consequences for patients. To address this issue, Explainable Artificial Intelligence (XAI) has emerged as a popular area of research, focused on understanding the black-box nature of complex and hard-to-interpret machine learning models. While humans can increase the accuracy of these models through technical expertise, understanding how these models actually function during training can be difficult or even impossible. XAI algorithms such as Local Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) can provide explanations for these models, improving trust in their predictions by providing feature importance and increasing confidence in the systems. Many articles have been published that propose solutions to medical problems by using machine learning models alongside XAI algorithms to provide interpretability and explainability. In our study, we identified 454 articles published from 2018-2022 and analyzed 93 of them to explore the use of these techniques in the medical domain.

3.
Stem Cell Rev Rep ; 19(7): 2525-2540, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37561284

ABSTRACT

Reproductive health of men is declining in today's world due to increased developmental exposure to endocrine-disrupting chemicals (EDCs). We earlier reported that neonatal exposure to endocrine disruption resulted in reduced numbers of seminiferous tubules in Stage VIII, decreased sperm count, and infertility along with testicular tumors in 65% of diethylstilbestrol (DES) treated mice. Epigenetic changes due to EDCs, pushed the VSELs out of a quiescent state to enter cell cycle and undergo excessive self-renewal while transition of c-KIT- stem cells into c-KIT + germ cells was blocked due to altered MMR axis (Np95, Pcna, Dnmts), global hypomethylation (reduced expression of 5-methylcytosine) and loss of imprinting at Igf2-H19 and Dlk1-Meg3 loci. The present study was undertaken to firstly show similar defects in FACS sorted VSELs from DES treated testis and to further explore the reversal of these testicular pathologies by (i) oral administration of XAR (a nano-formulation of resveratrol) or (ii) inter-tubular transplantation of mesenchymal stromal cells (MSCs). Similar defects as reported earlier in the testes were evident, based on RNAseq data, on FACS sorted VSELs from DES treated mice. Both strategies were found effective, improved spermatogenesis, increased number of tubules in Stage VIII, normalized numbers of VSELs and c-KIT + cells, improved epigenetic status of VSELs to restore quiescent state, and reduced cancer incidence from 65% after DES to 13.33% and 20% after XAR treatment or MSCs transplantation respectively. Results provide a basis for initiating clinical studies and the study falls under the umbrella of United Nations Sustainable Development Goal 3 to ensure healthy lives and well-being for all of all ages.

SELECTION OF CITATIONS
SEARCH DETAIL
...