Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 267: 128897, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33248734

ABSTRACT

Crop productivity and soil health are limited by organic carbon (OC), however, the variations in the mechanisms of SOC preservation in a complete soil profile subjected to long-term fertilization remains unclear. The objective of the study was to examined the content and profile distribution of the distinctive SOC protection mechanisms on a complete profile (0-100 cm) of Eumorthic Anthrosols in Northwest China after 23 years of chemical and manure fertilization. The soil was fractionated by combined physical-chemical and density floatation techniques. Throughout the profile, significant variations were observed among fractions. In the topsoil (0-20 and 20-40 cm), mineral coupling with the fertilization of manure (MNPK) enhanced total SOC content and recorded for 29% of SOC in the 0-20 and 20-40 cm layers. Moreover, MNPK increased the SOC content of the unprotected cPOC fraction by 60.9% and 61.5% in the 0-20 and 20-40 cm layer, while SOC content was low in the subsoil layers (40-60, 60-80 and 80-100 cm, respectively) compared with the control (C). The highest OC under MNPK in physically protected micro-aggregates (µagg) (6.36 and 6.06 g C kg-1), and occluded particulate organic carbon (iPOC) (1.41 and 1.29 g C kg-1) was found in the topsoil layers. The unprotected cPOC fraction was the greatest C accumulating fraction in the topsoil layers, followed by µagg and H-µSilt fractions in the soil profile, implying that these fractions were the most sensitive to the fertilization treatments. Overall, the unprotected, physically protected, and physico-chemically protected fractions were the dominant fractions for the sequestration of carbon across fertilization treatments and soil layers.


Subject(s)
Carbon , Soil , Agriculture , Asian People , Carbon/analysis , China , Fertilization , Fertilizers , Humans
2.
J Environ Manage ; 270: 110894, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32721331

ABSTRACT

Soil aggregation plays a critical role in the maintenance of soil structure, as well as in its productivity. Fertilization influences soil aggregation, especially by regulating soil organic carbon (SOC) and total nitrogen (TN) contents in aggregate fractions. The present study evaluated the influence of three contrasting fertilizer regimes (unfertilized control -CK-, mineral fertilization -NPK- and manure combined with NPK -NPKM) on soil aggregate stability, aggregate-associated organic carbon and total nitrogen sequestration and mineralization of SOC. Soil samples from (20 cm) depth were collected from a long-term fertilization experiment and analysed for size distribution ranging (>250 µm, 250-53 µm and <53 µm sizes), SOC and TN contents, as well as for mineralization of bulk and aggregate associated-SOC. Both NPK and NPKM fertilizations significantly enhanced SOC and TN contents in bulk soil and its constituent aggregates of >250 µm, 250-53 µm and <53 µm sizes, as compared to CK. Long-term NPK and NPKM increased SOC and TN stock in bulk soil by 45 and 98%, and by 70 and 144%, respectively, as compared to CK. Similarly, higher values of SOC and TN stock in all aggregate fractions was observed with the application of NPKM. Application of NPK and NPKM for 26 years significantly increased aggregate stability, which was positively correlated with total SOC contents in terms of mean weight diameter (MWD) (Adj. R2 = 0.689, p < 0.03) and geometric mean diameter (GMD) (Adj. R2 = 0.471, p < 0.24). Moreover, higher scores regarding cumulative mineralization for bulk soil and aggregate associated OC were observed with the application of NPK and NPKM. Irrespective of treatments, higher cumulative C-mineralization was observed for macro-aggregates (>250 µm size) followed by 250-53 µm and <53 µm size aggregates. Interestingly, a highly positive correlation was observed between aggregate stability and the cumulative amount of mineralization for bulk soil and aggregate fractions, with R2 ranging from 0.84 to 0.99. This study evidenced that long-term fertilization of NPK and NPKM can improve soil aggregation, stability and associated OC and TN stock in aggregates, as well as aggregate-associated OC mineralization, which was further governed by aggregate size.


Subject(s)
Nitrogen/analysis , Soil , Agriculture , Carbon/analysis , China , Fertilizers/analysis , Manure
SELECTION OF CITATIONS
SEARCH DETAIL
...