Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Luminescence ; 38(10): 1836-1843, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37555794

ABSTRACT

Naftidrofuryl is a vasodilator medication used for treating cerebral and peripheral vascular diseases. In this study, two spectroscopical techniques, spectrofluorimetric and resonance Rayleigh scattering (RRS), were utilized to quantify naftidrofuryl in its pharmaceutical samples. The developed methodologies in this study rely on a facile process of forming an association complex between erythrosine B reagent and naftidrofuryl under acidic conditions. The fluorimetric assay is based on the ability of naftidrofuryl to quench and decrease the native fluorescence intensity of the reagent when measured at λ emis . = 550 nm ( λ excit . = 526 nm). Under similar reaction conditions, the RRS method relies on the observed amplification in the RRS spectrum of the reagent at a wavelength of 577 nm following its interaction with naftidrofuryl. The methods exhibited linearity within the ranges 0.2-1.6 µg/ml (r2  = 0.999) and 0.1-1.4 µg/ml (r2  = 0.9994), with limit of quantitation values of 0.146 and 0.099 µg/ml, and limit of detection values of 0.048 and 0.032 µg/ml, for the fluorometric and the RRS methods, respectively. Moreover, the quenching between the dye and naftidrofuryl was studied using Stern-Volmer analysis, and the methodologies were experimentally optimized and validated. Additionally, acceptable recoveries were achieved when the procedures were applied to determine naftidrofuryl in pharmaceutical samples.


Subject(s)
Erythrosine , Nafronyl , Nafronyl/analysis , Spectrometry, Fluorescence/methods , Scattering, Radiation , Pharmaceutical Preparations
2.
Pharmaceutics ; 14(6)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35745829

ABSTRACT

(1) Background: Inflammation is one of the primary responses of the immune system and plays a key role in the pathophysiology of various diseases. Recent reports suggest that various phytochemicals exhibit promising anti-inflammatory and immunomodulation activities with relatively few undesirable effects, thus offering a viable option to deal with inflammation and associated diseases. The current study evaluates the anti-inflammatory and immunomodulatory effects of withaferin A (WA) in immune cells extracted from BALB/c mice. (2) Methods: MTT assays were performed to assess the cell viability of splenocytes and anti-inflammatory doses of WA. Under aseptic conditions, the isolation of macrophages and splenocytes from BALB/c mice was performed to investigate the anti-inflammatory effects of WA. Analysis of the expression of proinflammatory cytokines and associated signaling mediators was performed using proinflammatory assay kits, real-time polymerase chain reaction (RT-PCR), and immunoblotting, while the quantification of B and T cells was performed by flow cytometry. (3) Results: Our results demonstrated that WA exhibits anti-inflammatory and immunomodulatory effects in LPS-stimulated macrophages and splenocytes derived from BALB/c mice, respectively. Mechanistically, we found that WA promotes an anti-inflammatory effect on LPS-stimulated macrophages by attenuating the secretion and expression of proinflammatory cytokines TNF-α, IL-1ß, IL-6, and the inflammation modulator NO, both at the transcriptional and translational level, respectively. Further, WA inhibits LPS-stimulated inflammatory signaling by dephosphorylation of p-Akt-Ser473 and p-ERK1/2. This dephosphorylation does not allow IĸB-kinase activation to disrupt IĸB-NF-ĸB interaction. The consistent interaction of IĸB with NF-ĸB in WA-treated cells attenuates the activation of downstream inflammatory signaling mediators Cox-2 and iNOS expression, which play crucial roles in inflammatory signaling. Additionally, we observed significant immunomodulation of LPS-stimulated spleen-derived lymphocytes by suppression of B (CD19) and T (CD4+/CD8+) cell populations after treatment with WA. (4) Conclusion: WA exhibits anti-inflammatory and immunomodulatory activity by modulating Akt/ERK/NF-kB-mediated inflammatory signaling in macrophages and immunosuppression of B (CD19) and T cell (CD4+/CD8+) populations in splenocytes after LPS stimulation. These results suggest that WA could act as a potential anti-inflammatory/immunomodulatory molecule and support its use in the field of immunopharmacology to modulate immune system cells.

3.
J Fluoresc ; 29(1): 211-219, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30515727

ABSTRACT

A simple extractive spectrofluorimetric strategy for trace determination of mercury(II) ions in water employing procaine hydrochloride (PQ+) as an ion pairing fluorescent tagging reagent has been established. The method was based upon the extraction of PQ+ from aqueous iodide media onto dichloromethane as a ternary complex ion associate [(PQ+)2.(HgI4)2-] at pH 9.0-10.0 with subsequent quenching at λex/em = 268/333 nm. The developed strategy exhibited a linear range 20-140 nM with a lower limit of detection (LOD) 6.1 nM, respectively. Intra and inter-day laboratory accuracy and precision for trace analysis of mercury(II) ions in water were performed. Complexed mercury(II) species in real water samples were evaluated along with chemical speciation and successful comparison with most of the reported methods. The method was validated by standard inductively coupled plasma-optical emission spectrometry (ICP-OES) method in terms of student's t- and F tests at 95% confidence interval. The method offers rapidity, selectivity, cost-effectiveness, robustness, and ruggedness. Graphical Abstract Schematic illustration of the proposed sensing mechanism for mercury(II).

SELECTION OF CITATIONS
SEARCH DETAIL
...