Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(1): e23839, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38226281

ABSTRACT

Amino-functionalized metal organic frameworks (MOFs) have attracted much attention for various applications such as carbon dioxide capture, water remediation and catalysis. The focus of this study is to determine the surface and Lewis's acid-base properties of UiO-66(NH2) crystals by the inverse gas chromatography (IGC) technique at infinite dilution. The latter was applied to evaluate the dispersive component of the surface energy γsd(T) by using thermal model and several molecular models. The obtained results proved that γsd(T) decreases when the temperature increases. The best results were achieved by using the thermal model that takes into account the effect of the temperature on the surface areas of the organic molecules. We also observed a decrease of the Gibbs surface free energy of adsorption by increasing the temperature of the different organic solvents. The polar interactions of UiO-66(NH2) were obtained by using the methods of Saint-Flour Papirer, Donnet et al., Brendlé-Papirer and the different molecular models. The Lewis's acid base constants KA and KD were further calculated by determining the different variables of adsorption of the probes on the solid surface and the obtained values were 1.07 and 0.45 for KA and KD respectively, with an acid-base ratio (KA/KD) of 2.38. These values showed the high acidic surface of the solid substrate; whereas, the values of the entropic acid base parameters, ωA, ωD and ωA/ωD respectively equal to 1.0×10-3, 3.8×10-4 and 2.73, also highlighted the important acidity of UiO-66-(NH2) surface. These important findings suggest that the surface defects (missing linkers and/or clusters) in UiO-66(NH2) are the main determining factor of the acid-base properties of UiO-66 based structures.

2.
Sci Rep ; 10(1): 20894, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33262429

ABSTRACT

The thermodynamic surface properties and Lewis acid-base constants of H-ß-zeolite supported rhodium catalysts were determined by using the inverse gas chromatography technique at infinite dilution. The effect of the temperature and the rhodium percentage supported by zeolite on the acid base properties in Lewis terms of the various catalysts were studied. The dispersive component of the surface energy of Rh/H-ß-zeolite was calculated by using both the Dorris and Gray method and the straight-line method. We highlighted the role of the surface areas of n-alkanes on the determination of the surface energy of catalysts. To this aim various molecular models of n-alkanes were tested, namely Kiselev, cylindrical, Van der Waals, Redlich-Kwong, geometric and spherical models. An important deviation in the values of the dispersive component of the surface energy [Formula: see text] determined by the classical and new methods was emphasized. A non-linear dependency of [Formula: see text] with the specific surface area of catalysts was highlighted showing a local maximum at 1%Rh. The study of RTlnVn and the specific free energy ∆Gsp(T) of n-alkanes and polar solvents adsorbed on the various catalysts revealed the important change in the acid properties of catalysts with both the temperature and the rhodium percentage. The results proved strong amphoteric behavior of all catalysts of the rhodium supported by H-ß-zeolite that actively react with the amphoteric solvents (methanol, acetone, tri-CE and tetra-CE), acid (chloroform) and base (ether) molecules. It was shown that the Guttmann method generally used to determine the acid base constants KA and KD revealed some irregularities with a linear regression coefficient not very satisfactory. The accurate determination of the acid-base constants KA, KD and K of the various catalysts was obtained by applying Hamieh's model (linear regression coefficients approaching r2 ≈ 1.000). It was proved that all acid base constants determined by this model strongly depends on the rhodium percentage and the specific surface area of the catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL