Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 26(47): 474205, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25352559

ABSTRACT

We report on the fabrication of hybrid molecular devices employing multi-layer graphene (MLG) flakes which are patterned with a constriction using a helium ion microscope or an oxygen plasma etch. The patterning step allows for the localization of a few-nanometer gap, created by electroburning, that can host single molecules or molecular ensembles. By controlling the width of the sculpted constriction, we regulate the critical power at which the electroburning process begins. We estimate the flake temperature given the critical power and find that at low powers it is possible to electroburn MLG with superconducting contacts in close proximity. Finally, we demonstrate the fabrication of hybrid devices with superconducting contacts and anthracene-functionalized copper curcuminoid molecules. This method is extendable to spintronic devices with ferromagnetic contacts and a first step towards molecular integrated circuits.

2.
Phys Rev Lett ; 91(22): 227203, 2003 Nov 28.
Article in English | MEDLINE | ID: mdl-14683269

ABSTRACT

A new family of supramolecular, antiferromagnetically exchange-coupled dimers of single-molecule magnets (SMMs) has recently been reported. Each SMM acts as a bias on its neighbor, shifting the quantum tunneling resonances of the individual SMMs. Hysteresis loop measurements on a single crystal of SMM dimers have now established quantum tunneling of the magnetization via entangled states of the dimer. This shows that the dimer really does behave as a quantum mechanically coupled dimer, and also allows the measurement of the longitudinal and transverse superexchange coupling constants.

3.
Science ; 302(5647): 1015-8, 2003 Nov 07.
Article in English | MEDLINE | ID: mdl-14605362

ABSTRACT

A multi- high-frequency electron paramagnetic resonance method is used to probe the magnetic excitations of a dimer of single-molecule magnets. The measured spectra display well-resolved quantum transitions involving coherent superposition states of both molecules. The behavior may be understood in terms of an isotropic superexchange coupling between pairs of single-molecule magnets, in analogy with several recently proposed quantum devices based on artificially fabricated quantum dots or clusters. These findings highlight the potential utility of supramolecular chemistry in the design of future quantum devices based on molecular nanomagnets.

SELECTION OF CITATIONS
SEARCH DETAIL
...