Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Steroid Biochem Mol Biol ; 98(4-5): 236-47, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16513342

ABSTRACT

A purified preparation of human estrogen receptor alpha (hERalpha) ligand-binding domain (LBD) involving mainly the Ser(309)Ala(569) (approximately 30%) and Ser(309)Ala(571) (approximately 63%) ER portions was used to identify the covalent attachment sites of two closely related estrogenic ER affinity labels 17alpha-bromoacetamidopropylestradiol (17BAPE(2)) and 17alpha-bromoacetamidomethylestradiol (17BAME(2)). To identify and quantify the electrophile covalent attachment sites, [(14)C]17BAPE(2)- and [(14)C]17BAME(2)-alkylated hLBD preparations were trypsinized and submitted to HPLC. In each case, two radioactive fractions were obtained. Mass spectrometry analyses of the two fractions showed signals, which closely matched the molecular masses of alkylated Cys(530)Lys(531) and Cys(417)Arg(434) hLBD tryptic peptides. The covalent attachment of the two electrophiles on hLBD was assigned to the S atoms of Cys(530) and Cys(417). However, the balance between Cys(530) and Cys(417) labeling markedly differed according to the affinity label used, with the Cys(530)/Cys(417) ratio being 2.1 for 17BAPE(2), and 20 for 17BAME(2). We attempted to interpret the covalent attachment of electrophiles by molecular modeling using the crystallographic structure of LBD bound to E(2). In agreement with the different levels of Cys(417) alkylation, the LBD model with unchanged helices could not easily account for Cys(417) labeling by 17BAME(2), whereas favorable results were obtained through 17BAPE(2) docking. Moreover, labeling at Cys(530) by the two electrophiles could not be interpreted using the LBD model. This indicates that some states of solute LBD bound to the estrogenic E(2) 17alpha-derivatives differ from the structure of crystallized LBD bound to E(2).


Subject(s)
Estradiol/metabolism , Estrogen Receptor alpha/metabolism , Affinity Labels , Binding Sites , Humans , Ligands , Models, Molecular , Peptide Fragments/analysis , Peptide Mapping , Protein Binding , Spectrometry, Mass, Electrospray Ionization
2.
J Steroid Biochem Mol Biol ; 98(2-3): 111-21, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16439113

ABSTRACT

Affinity labeling of human estrogen receptor alpha (ERalpha) by high affinity and antiestrogenic estradiol (E(2)) 11 beta-derivatives, 11 beta-bromoacetamidoethoxyphenylE(2) (11BAEOPE(2)) and 11 beta-bromoacetamidopentoxyphenylE(2) (11BAPOPE(2)) was studied using glutathione-S-transferase (GST) fused to the ligand-binding domain (LBD) of human ERalpha. To identify and quantify the electrophile covalent attachment sites on LBD, [(14)C]11BAEOPE(2)- and [(14)C]11BAPOPE(2)-alkylated LBD were separated from GST, purified, and then trypsinized. HPLC of LBD tryptic fragments afforded one and two radioactive peaks (the ratio of the two latter peaks was 84/16) in the chromatograms related to LBD alkylated by 11BAEOPE(2) and 11BAPOPE(2), respectively. Mass spectrometry (MS) analyses of the fractions related to the single peak and to the major one of the two peaks showed signals which accurately matched the mass of electrophile-alkylated Cys(530)Lys(531) LBD tryptic peptide, whereas no signal compatible with an alkylated form of an LBD tryptic peptide was detected in the MS analysis of the minor peak-related fractions. MS/MS analysis of alkylated CysLys dipeptide revealed the presence of fragments that unambiguously designated the Cys S as the covalent attachment site of the electrophiles. We attempted to interpret the biochemical data by molecular modeling using various crystallographic structures of human LBD-ligand complexes. In agreement with the endocrine properties of electrophiles, labeling at Cys(530) could be accounted for by a LBD structure derived from LBD bound to 4-hydroxytamoxifen, a triphenylethylene antiestrogen. The common attachment to Cys(530) of estrogenic E(2) 17 alpha-derivatives [H. Mattras, S. Aliau, E. Demey, J. Poncet, J.L. Borgna, Mass spectrometry identification of covalent attachment sites of two related estrogenic ligands on human estrogen receptor alpha, J. Steroid Biochem. Mol. Biol. 98 (4-5), in press] and antiestrogenic E(2) 11 beta-derivatives suggests that the LBD portion encompassing this amino acid possesses a marked plasticity.


Subject(s)
Estradiol/analogs & derivatives , Estradiol/chemistry , Estrogen Receptor alpha/chemistry , Ligands , Affinity Labels , Amino Acid Sequence , Binding Sites , Crystallization , Cysteine/chemistry , Cysteine/metabolism , Estradiol/agonists , Glutathione Transferase/chemistry , Glutathione Transferase/genetics , Humans , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism
3.
Biochemistry ; 41(52): 15713-27, 2002 Dec 31.
Article in English | MEDLINE | ID: mdl-12501200

ABSTRACT

Mass spectrometry was used to identify the sites of covalent attachment of [(14)C]-17alpha-bromoacetamidopropylestradiol ([(14)C]17BAPE(2), an estradiol agonist) to the ligand-binding domain (LBD) of mouse estrogen receptor alpha (ERalpha). A glutathione S-transferase (GST)-LBD chimera protein was overexpressed in Escherichia coli, using a vector encoding GST fused with a C-terminal portion of mouse ERalpha (Ser(313)-Ile(599)), via a sequence enclosing a thrombin cleavage site (located 14 amino acids ahead of Ser313). [(14)C]17BAPE(2) covalent labeling experiments were carried out on the GST-LBD chimera immobilized on glutathione-Sepharose. After thrombin cleavage of the chimeric LBD, two major [(14)C]17BAPE(2)-labeled species of 34 ( approximately 75%) and 30 kDa ( approximately 25%) were detected by SDS-PAGE and autoradiography. Their identity was assessed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): two main signals were consistent with the mass of the full-length (Ser(313)-Ile(599)) and truncated LBD (Ser(313)-Ala(573)), both comprising the extra 14 N-terminal amino acids and covalently bound [(14)C]17BAPE(2) (via HBr elimination). A purified (14)C-labeled LBD preparation was trypsinized to identify the covalent attachment sites of 17BAPE(2). HPLC of tryptic fragments only revealed two discrete and practically equivalent radioactive fractions. MALDI-TOF MS analysis of these two fractions showed only two signals which exactly matched the molecular masses of the [(14)C]17BAPE(2)-alkylated Cys(534)Lys(535) and Cys(421)-Arg(438) peptides, respectively. Hydrolysis of the second (14)C-labeled fraction by Staphylococcus aureus V8 Glu-C endoproteinase generated signals typical of alkylated the Cys(421)-Glu(423) tripeptide. We concluded that Cys421 and Cys534 were equivalent alternative covalent attachment sites of 17BAPE(2) on the LBD. These biochemical data were interpreted using the crystallographic structures of estradiol-LBD and raloxifene- or 4-hydroxytamoxifen-LBD complexes. The covalent attachment to Cys421, Cys534, or both could be interpreted according to the starting structure. Various hypotheses based on the biochemical results and molecular modeling simulations are discussed, with the likely involvement of dynamic interconversion between multiple conformational states of the LBD-17BAPE(2) complex.


Subject(s)
Affinity Labels/chemistry , Estradiol/chemistry , Receptors, Estrogen/chemistry , Amino Acid Sequence , Animals , Binding Sites , Carbon Radioisotopes , Estradiol/agonists , Estradiol/analogs & derivatives , Estrogen Receptor alpha , Glutathione Transferase/chemistry , Glutathione Transferase/genetics , Humans , Ligands , Mice , Models, Molecular , Molecular Sequence Data , Peptide Fragments/analysis , Peptide Fragments/genetics , Peptide Mapping/methods , Protein Structure, Tertiary/genetics , Receptors, Estrogen/biosynthesis , Receptors, Estrogen/genetics , Receptors, Estrogen/isolation & purification , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
4.
Biochemistry ; 41(25): 7979-88, 2002 Jun 25.
Article in English | MEDLINE | ID: mdl-12069588

ABSTRACT

We investigated the role of H524 of the human estrogen receptor alpha (ERalpha) for the binding of various estrogens [estradiol (E(2)), 3-deoxyestradiol (3-dE(2)), and 17beta-deoxyestradiol (17beta-dE(2))] and antiestrogens [4-hydroxytamoxifen (OHT), RU 39 411 (RU), and raloxifene (Ral)], which possess the 17beta-hydroxyl or counterpart hydroxyl (designated: 17beta/c-OH), with the exception of 17beta-dE(2) and OHT. The work involved a comparison of the binding affinities of these ligands for wild-type and H524 mutant ERs, modified or not with diethyl pyrocarbonate (DEPC), a selective histidine reagent. Alanine substitution of H524 did not significantly change the association affinity constant (relative to OHT) of 17beta-dE(2), whereas those of RU, Ral, E(2), and 3-dE(2) were decreased 3-fold, 14-fold, 24-fold, and 49-fold, respectively. Values of the two ligands available in radiolabeled form (E(2) and OHT) were correlated with the dissociation rate constants, which were increased 250-fold and 2-fold, respectively. The action of DEPC on wild-type ER led to a homogeneous ER population which still bound antiestrogens and 17beta-dE(2) with practically unchanged affinities (less than 4-fold decreases in relative affinity constants), while E(2) and 3-dE(2) displayed markedly decreased affinities (56-fold decrease for E(2)). Conversely, DEPC treatment of H524A mutant ER did not induce marked decreases in the relative affinities of any of the checked compounds (decreases wild-type ER) and very weakly protected H524A ER. Molecular modeling was tentatively used to interpret the biochemical results.


Subject(s)
Estradiol/analogs & derivatives , Estrogen Receptor Modulators/metabolism , Estrogens/metabolism , Histidine/metabolism , Hydroxyl Radical/metabolism , Receptors, Estrogen/metabolism , Tamoxifen/analogs & derivatives , Alanine/genetics , Amino Acid Substitution/genetics , Animals , Binding Sites/genetics , COS Cells , Diethyl Pyrocarbonate/chemistry , Estradiol/chemistry , Estradiol/metabolism , Estrogen Receptor Modulators/chemistry , Estrogen Receptor alpha , Estrogens/chemistry , Histidine/genetics , Humans , Hydroxyl Radical/chemistry , Ligands , Raloxifene Hydrochloride/chemistry , Raloxifene Hydrochloride/metabolism , Receptors, Estrogen/antagonists & inhibitors , Receptors, Estrogen/chemistry , Receptors, Estrogen/genetics , Tamoxifen/chemistry , Tamoxifen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...