Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(15): 17164-17174, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35390252

ABSTRACT

Magnesium nanoparticles (NPs) offer the potential of high-performance reactive materials from both thermodynamic and kinetic perspectives. However, the fundamental energy release mechanisms and kinetics have not been explored due to the lack of facile synthetic routes to high-purity Mg NPs. Here, a vapor-phase route to surface-pure, core-shell nanoscale Mg particles is presented, whereby controlled evaporation and growth are utilized to tune particle sizes (40-500 nm), and their size-dependent reactivity and energetic characteristics are evaluated. Extensive in situ characterizations shed light on the fundamental reaction mechanisms governing the energy release of Mg NP-based energetic composites across particle sizes and oxidizer chemistries. Direct observations from in situ transmission electron microscopy and high-speed temperature-jump/time-of-flight mass spectrometry coupled with ignition characterization reveal that the remarkably high reactivity of Mg NPs is a direct consequence of enhanced vaporization and Mg release from their high-energy surfaces that result in the accelerated energy release kinetics from their composites. Mg NP composites also demonstrate mitigated agglomeration and sintering during reaction due to rapid gasification, enabling complete energy extraction from their oxidation. This work expands the compositional possibilities of nanoscale solid fuels by highlighting the critical relationships between metal volatilization and oxidative energy release from Mg NPs, thus opening new opportunities for strategic design of functional Mg-based nanoenergetic materials for tunable energy release.

2.
ACS Appl Mater Interfaces ; 12(1): 126-134, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31800209

ABSTRACT

With the emergence of multidrug-resistant bacteria, photothermal therapy has been proposed as an alternative to antibiotics for targeting and killing pathogens. In this study, two M13 bacteriophage polymorphs were studied as nanoscaffolds for plasmonic bactericidal agents. Receptor-binding proteins found on the pIII minor coat protein targeted Escherichia coli bacteria with F-pili (F+ strain), while a gold-binding peptide motif displayed on the pVIII major coat protein templated Au nanoparticles. Temperature-dependent exposure to a chloroform-water interface transformed the native filamentous phage into either rod-like or spheroid structures. The morphology, geometry, and size of the polymorphs, as well as the receptor-binding protein and host cell receptor interaction were studied using electron microscopy. Au/template structures were formed through incubation with Au colloid, and optical absorbance was measured. Despite the closely packed Au nanoparticle layer on the surface the viral scaffolds, electron microscopy confirmed that host receptor affinity was retained. Photothermal bactericidal studies were performed using 532 nm laser irradiation with a variety of powers and exposure times. Bacterial viability was assessed using colony count. With the shape-modified M13 scaffolds, up to 64% of E. coli were killed within 20 min. These studies demonstrate the promise of i-form and s-form polymorphs for the directed plasmonic-based photothermal killing of bacteria.


Subject(s)
Anti-Bacterial Agents , Bacteriophage M13/chemistry , Escherichia coli , Gold/chemistry , Hot Temperature , Lasers , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/chemistry , Escherichia coli/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...