Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11909, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789721

ABSTRACT

T cells recirculate through tissues and lymphatic organs to scan for their cognate antigen. Radiation therapy provides site-specific cytotoxicity to kill cancer cells but also has the potential to eliminate the tumor-specific T cells in field. To dynamically study the effect of radiation on CD8 T cell recirculation, we used the Kaede mouse model to photoconvert tumor-infiltrating cells and monitor their movement out of the field of radiation. We demonstrate that radiation results in loss of CD8 T cell recirculation from the tumor to the lymph node and to distant sites. Using scRNASeq, we see decreased proliferating CD8 T cells in the tumor following radiation therapy resulting in a proportional enrichment in exhausted phenotypes. By contrast, 5 days following radiation increased recirculation of T cells from the tumor to the tumor draining lymph node corresponds with increased immunosurveillance of the treated tumor. These data demonstrate that tumor radiation therapy transiently impairs systemic T cell recirculation from the treatment site to the draining lymph node and distant untreated tumors. This may inform timing therapies to improve systemic T cell-mediated tumor immunity.


Subject(s)
CD8-Positive T-Lymphocytes , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymph Nodes/radiation effects , Lymph Nodes/pathology , Lymph Nodes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/radiotherapy , Neoplasms/immunology , Neoplasms/pathology , Cell Tracking/methods , Cell Line, Tumor , Mice, Inbred C57BL , Fluorescence
2.
Int Rev Cell Mol Biol ; 378: 61-104, 2023.
Article in English | MEDLINE | ID: mdl-37438021

ABSTRACT

Dendritic cells perform critical functions in bridging innate and adaptive immunity. Their ability to sense adjuvant signals in their environment, migrate on maturation, and cross-present cell-associated antigens enables these cells to carry antigen from tissue sites to lymph nodes, and thereby prime naïve T cells that cannot enter tissues. Despite being an infrequent cell type in tumors, we discuss how dendritic cells impact the immune environment of tumors and their response to cancer therapies. We review how radiation therapy of tumors can impact dendritic cells, through transfer of cell associated antigens to dendritic cells and the release of endogenous adjuvants, resulting in increased antigen presentation in the tumor-draining lymph nodes. We explore how tumor specific factors can result in negative regulation of dendritic cell function in the tumor, and the impact of direct radiation exposure to dendritic cells in the treatment field. These data suggest an important role for dendritic cell subpopulations in activating new T cell responses and boosting existing T cell responses to tumor associated antigens in tumor draining lymph nodes following radiation therapy. It further justifies a focus on the needs of the lymph node T cells to improve systemic anti-immunity following radiation therapy.


Subject(s)
Adaptive Immunity , Antigen Presentation , Dendritic Cells
3.
Sci Rep ; 13(1): 8634, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244938

ABSTRACT

Radiation therapy induces immunogenic cell death in cancer cells, whereby released endogenous adjuvants are sensed by immune cells to direct adaptive immune responses. TLRs expressed on several immune subtypes recognize innate adjuvants to direct downstream inflammatory responses in part via the adapter protein MyD88. We generated Myd88 conditional knockout mice to interrogate its contribution to the immune response to radiation therapy in distinct immune populations in pancreatic cancer. Surprisingly, Myd88 deletion in Itgax (CD11c)-expressing dendritic cells had little discernable effects on response to RT in pancreatic cancer and elicited normal T cell responses using a prime/boost vaccination strategy. Myd88 deletion in Lck-expressing T cells resulted in similar or worsened responses to radiation therapy compared to wild-type mice and lacked antigen-specific CD8+ T cell responses from vaccination, similar to observations in Myd88-/- mice. Lyz2-specific loss of Myd88 in myeloid populations rendered tumors more susceptible to radiation therapy and elicited normal CD8+ T cell responses to vaccination. scRNAseq in Lyz2-Cre/Myd88fl/fl mice revealed gene signatures in macrophages and monocytes indicative of enhanced type I and II interferon responses, and improved responses to RT were dependent on CD8+ T cells and IFNAR1. Together, these data implicate MyD88 signaling in myeloid cells as a critical source of immunosuppression that hinders adaptive immune tumor control following radiation therapy.


Subject(s)
CD8-Positive T-Lymphocytes , Pancreatic Neoplasms , Mice , Animals , Myeloid Differentiation Factor 88/metabolism , Monocytes/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/radiotherapy , Mice, Knockout , Adjuvants, Immunologic/metabolism , Mice, Inbred C57BL , Pancreatic Neoplasms
4.
Sci Rep ; 13(1): 6277, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072485

ABSTRACT

Tissue resident memory (Trm) CD8 T cells infiltrating tumors represent an enriched population of tumor antigen-specific T cells, and their presence is associated with improved outcomes in patients. Using genetically engineered mouse pancreatic tumor models we demonstrate that tumor implantation generates a Trm niche that is dependent on direct antigen presentation by cancer cells. However, we observe that initial CCR7-mediated localization of CD8 T cells to tumor draining lymph nodes is required to subsequently generate CD103+ CD8 T cells in tumors. We observe that the formation of CD103+ CD8 T cells in tumors is dependent on CD40L but independent of CD4 T cells, and using mixed chimeras we show that CD8 T cells can provide their own CD40L to permit CD103+ CD8 T cell differentiation. Finally, we show that CD40L is required to provide systemic protection against secondary tumors. These data suggest that CD103+ CD8 T cell formation in tumors can occur independent of the two-factor authentication provided by CD4 T cells and highlight CD103+ CD8 T cells as a distinct differentiation decision from CD4-dependent central memory.


Subject(s)
Immunologic Memory , Neoplasms , Animals , Mice , CD40 Ligand , Neoplasms/pathology , CD8-Positive T-Lymphocytes , Lymphocyte Activation
5.
Life Sci Alliance ; 5(9)2022 09.
Article in English | MEDLINE | ID: mdl-35487695

ABSTRACT

Radiation therapy generates extensive cancer cell death capable of promoting tumor-specific immunity. Within the tumor, conventional dendritic cells (cDCs) are known to carry tumor-associated antigens to the draining lymph node (TdLN) where they initiate T-cell priming. How radiation influences cDC migration is poorly understood. Here, we show that immunological efficacy of radiation therapy is dependent on cDC migration in radioimmunogenic tumors. Using photoconvertible mice, we demonstrate that radiation impairs cDC migration to the TdLN in poorly radioimmunogenic tumors. Comparative transcriptional analysis revealed that cDCs in radioimmunogenic tumors express genes associated with activation of endogenous adjuvant signaling pathways when compared with poorly radioimmunogenic tumors. Moreover, an exogenous adjuvant combined with radiation increased the number of migrating cDCs in these poorly radioimmunogenic tumors. Taken together, our data demonstrate that cDC migration play a critical role in the response to radiation therapy.


Subject(s)
Dendritic Cells , Lymph Nodes , Animals , Mice , T-Lymphocytes
6.
Sci Rep ; 11(1): 16347, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381163

ABSTRACT

Gamma-delta (γδ) T cells express T cell receptors (TCR) that are preconfigured to recognize signs of pathogen infection. In primates, γδ T cells expressing the Vγ9Vδ2 TCR innately recognize (E)-4-hydroxy-3-methyl-but- 2-enyl pyrophosphate (HMBPP), a product of the 2-C-methyl-D-erythritol 4- phosphate (MEP) pathway in bacteria that is presented in infected cells via interaction with members of the B7 family of costimulatory molecules butyrophilin (BTN) 3A1 and BTN2A1. In humans, Listeria monocytogenes (Lm) vaccine platforms have the potential to generate potent Vγ9Vδ2 T cell recognition. To evaluate the activation of Vγ9Vδ2 T cells by Lm-infected human monocyte-derived dendritic cells (Mo-DC) we engineered Lm strains that lack components of the MEP pathway. Direct infection of Mo-DC with these bacteria were unchanged in their ability to activate CD107a expression in Vγ9Vδ2 T cells despite an inability to synthesize HMBPP. Importantly, functional BTN3A1 was essential for this activation. Unexpectedly, we found that cytoplasmic entry of Lm into human dendritic cells resulted in upregulation of cholesterol metabolism in these cells, and the effect of pathway regulatory drugs suggest this occurs via increased synthesis of the alternative endogenous Vγ9Vδ2 ligand isoprenyl pyrophosphate (IPP) and/or its isomer dimethylallyl pyrophosphate (DMAPP). Thus, following direct infection, host pathways regulated by cytoplasmic entry of Lm can trigger Vγ9Vδ2 T cell recognition of infected cells without production of the unique bacterial ligand HMBPP.


Subject(s)
Dendritic Cells/immunology , Listeria monocytogenes/immunology , Monocytes/immunology , Organophosphates/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Butyrophilins/immunology , Cells, Cultured , Hemiterpenes/immunology , Humans , Lymphocyte Activation/immunology , Lysosomal-Associated Membrane Protein 1/immunology , Organophosphorus Compounds/immunology , Protein Binding/immunology
7.
Front Oncol ; 11: 653625, 2021.
Article in English | MEDLINE | ID: mdl-33968757

ABSTRACT

Analysis of tumor infiltration using conventional methods reveals a snapshot view of lymphocyte interactions with the tumor environment. However, lymphocytes have the unique capacity for continued recirculation, exploring varied tissues for the presence of cognate antigens according to inflammatory triggers and chemokine gradients. We discuss the role of the inflammatory and cellular makeup of the tumor environment, as well as antigen expressed by cancer cells or cross-presented by stromal antigen presenting cells, on recirculation kinetics of T cells. We aim to discuss how current cancer therapies may manipulate lymphocyte recirculation versus retention to impact lymphocyte exclusion in the tumor.

8.
Sci Rep ; 10(1): 7376, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32355214

ABSTRACT

Radiation therapy has been shown to enhance the efficacy of various T cell-targeted immunotherapies that improve antigen-specific T cell expansion, T regulatory cell depletion, or effector T cell function. Additionally, radiation therapy has been proposed as a means to recruit T cells to the treatment site and modulate cancer cells as effector T cell targets. The significance of these features remains unclear. We set out to determine, in checkpoint inhibitor resistant models, which components of radiation are primarily responsible for overcoming this resistance. In order to model the vaccination effect of radiation, we used a Listeria monocytogenes based vaccine to generate a large population of tumor antigen specific T cells but found that the presence of cells with cytotoxic capacity was unable to replicate the efficacy of radiation with combination checkpoint blockade. Instead, we demonstrated that a major role of radiation was to increase the susceptibility of surviving cancer cells to CD8+ T cell-mediated control through enhanced MHC-I expression. We observed a novel mechanism of genetic induction of MHC-I in cancer cells through upregulation of the MHC-I transactivator NLRC5. These data support the critical role of local modulation of tumors by radiation to improve tumor control with combination immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Gene Expression Regulation, Neoplastic/immunology , Histocompatibility Antigens Class I/immunology , Immunity, Cellular , Intracellular Signaling Peptides and Proteins/immunology , Membrane Proteins/immunology , Neoplasm Proteins/immunology , Neoplasms, Experimental/immunology , Transcription, Genetic/immunology , Up-Regulation/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Cell Line, Tumor , Histocompatibility Antigens Class I/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Neoplasms, Experimental/genetics , Neoplasms, Experimental/therapy , Radiotherapy
9.
J Immunol ; 204(12): 3416-3424, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32341058

ABSTRACT

Radiation therapy is capable of directing adaptive immune responses against tumors by stimulating the release of endogenous adjuvants and tumor-associated Ags. Within the tumor, conventional type 1 dendritic cells (cDC1s) are uniquely positioned to respond to these signals, uptake exogenous tumor Ags, and migrate to the tumor draining lymph node to initiate cross-priming of tumor-reactive cytotoxic CD8+ T cells. In this study, we report that radiation therapy promotes the activation of intratumoral cDC1s in radioimmunogenic murine tumors, and this process fails to occur in poorly radioimmunogenic murine tumors. In poorly radioimmunogenic tumors, the adjuvant polyinosinic-polycytidylic acid overcomes this failure following radiation and successfully drives intratumoral cDC1 maturation, ultimately resulting in durable tumor cures. Depletion studies revealed that both cDC1 and CD8+ T cells are required for tumor regression following combination therapy. We further demonstrate that treatment with radiation and polyinosinic-polycytidylic acid significantly expands the proportion of proliferating CD8+ T cells in the tumor with enhanced cytolytic potential and requires T cell migration from lymph nodes for therapeutic efficacy. Thus, we conclude that lack of endogenous adjuvant release or active suppression following radiation therapy may limit its efficacy in poorly radioimmunogenic tumors, and coadministration of exogenous adjuvants that promote cDC1 maturation and migration can overcome this limitation to improve tumor control following radiation therapy.


Subject(s)
Dendritic Cells/immunology , Neoplasms/immunology , Neoplasms/radiotherapy , Adjuvants, Immunologic/administration & dosage , Animals , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Movement/immunology , Cross-Priming/immunology , Immunotherapy, Adoptive/methods , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Poly I-C/immunology , Radiotherapy/methods
10.
Nat Commun ; 11(1): 1749, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32273499

ABSTRACT

Transforming growth factor beta (TGFß) is a multipotent immunosuppressive cytokine. TGFß excludes immune cells from tumors, and TGFß inhibition improves the efficacy of cytotoxic and immune therapies. Using preclinical colorectal cancer models in cell type-conditional TGFß receptor I (ALK5) knockout mice, we interrogate this mechanism. Tumor growth delay and radiation response are unchanged in animals with Treg or macrophage-specific ALK5 deletion. However, CD8αCre-ALK5flox/flox (ALK5ΔCD8) mice reject tumors in high proportions, dependent on CD8+ T cells. ALK5ΔCD8 mice have more tumor-infiltrating effector CD8+ T cells, with more cytotoxic capacity. ALK5-deficient CD8+ T cells exhibit increased CXCR3 expression and enhanced migration towards CXCL10. TGFß reduces CXCR3 expression, and increases binding of Smad2 to the CXCR3 promoter. In vivo CXCR3 blockade partially abrogates the survival advantage of an ALK5ΔCD8 host. These data demonstrate a mechanism of TGFß immunosuppression through inhibition of CXCR3 in CD8+ T cells, thereby limiting their trafficking into tumors.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Cell Movement/drug effects , Gene Expression Regulation/drug effects , Neoplasms/genetics , Receptors, CXCR3/genetics , Transforming Growth Factor beta/pharmacology , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Survival/drug effects , Cell Survival/genetics , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/metabolism , Neoplasms/pathology , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Receptors, CXCR3/metabolism , Smad2 Protein/metabolism
11.
PLoS One ; 14(2): e0211117, 2019.
Article in English | MEDLINE | ID: mdl-30726287

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibrotic stroma with a poor lymphocyte infiltrate, in part driven by cancer-associated fibroblasts (CAFs). CAFs, which express fibroblast activation protein (FAP), contribute to immune escape via exclusion of anti-tumor CD8+ T cells from cancer cells, upregulation of immune checkpoint ligand expression, immunosuppressive cytokine production, and polarization of tumor infiltrating inflammatory cells. FAP is a post-proline peptidase selectively expressed during tissue remodeling and repair, such as with wound healing, and in the tumor microenvironment by cancer-associated fibroblasts. We targeted FAP function using a novel small molecule inhibitor, UAMC-1110, and mice with germline knockout of FAP and concomitant knock-in of E. coli beta-galactosidase. We depleted CAFs by adoptive transfer of anti-ßgal T cells into the FAP knockout animals. Established syngeneic pancreatic tumors in immune competent mice were targeted with these 3 strategies, followed by focal radiotherapy to the tumor. FAP loss was associated with improved antigen-specific tumor T cell infiltrate and enhanced collagen deposition. However, FAP targeting alone or with tumor-directed radiation did not improve survival even when combined with anti-PD1 therapy. Targeting of CAFs alone or in combination with radiation did not improve survival. We conclude that targeting FAP and CAFs in combination with radiation is capable of enhancing anti-tumor T cell infiltrate and function, but does not result in sufficient tumor clearance to extend survival.


Subject(s)
Antibodies/metabolism , Carcinoma, Pancreatic Ductal/therapy , Gelatinases/antagonists & inhibitors , Membrane Proteins/antagonists & inhibitors , Pancreatic Neoplasms/therapy , Small Molecule Libraries/administration & dosage , T-Lymphocytes/transplantation , Adoptive Transfer , Animals , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Chemoradiotherapy , Combined Modality Therapy , Endopeptidases , Gelatinases/genetics , Gene Knock-In Techniques , Gene Knockout Techniques , Humans , Membrane Proteins/genetics , Mice , Pancreatic Neoplasms/metabolism , Serine Endopeptidases/genetics , Small Molecule Libraries/pharmacology , T-Lymphocytes/immunology , Treatment Outcome , Xenograft Model Antitumor Assays , beta-Galactosidase/immunology
12.
Int Rev Cell Mol Biol ; 344: 173-214, 2019.
Article in English | MEDLINE | ID: mdl-30798988

ABSTRACT

Nucleic acid sensing pathways have likely evolved as part of a broad pathogen sensing strategy intended to discriminate infectious agents and initiate appropriate innate and adaptive controls. However, in the absence of infectious agents, nucleic acid sensing pathways have been shown to play positive and negative roles in regulating tumorigenesis, tumor progression and metastatic spread. Understanding the normal biology behind these pathways and how they are regulated in malignant cells and in the tumor immune environment can help us devise strategies to exploit nucleic acid sensing to manipulate anti-cancer immunity.


Subject(s)
Immunity , Neoplasms/immunology , Nucleic Acids/metabolism , Animals , Carcinogenesis/pathology , DNA Damage , Humans , Neoplasms/therapy
13.
PLoS One ; 14(1): e0209153, 2019.
Article in English | MEDLINE | ID: mdl-30601871

ABSTRACT

Dysregulated signaling via the epidermal growth factor receptor (EGFR)-family is believed to contribute to the progression of a diverse array of cancers. The most common variant of EGFR is EGFRvIII, which results from a consistent and tumor-specific in-frame deletion of exons 2-7 of the EGFR gene. This deletion generates a novel glycine at the junction and leads to constitutive ligand-independent activity. This junction forms a novel shared tumor neo-antigen with demonstrated immunogenicity in both mice and humans. A 21-amino acid peptide spanning the junctional region was selected, and then one or five copies of this 21-AA neo-peptide were incorporated into live-attenuated Listeria monocytogenes-based vaccine vector. These vaccine candidates demonstrated efficient secretion of the recombinant protein and potent induction of EGFRvIII-specific CD8+ T cells, which prevented growth of an EGFRvIII-expressing squamous cell carcinoma. These data demonstrate the potency of a novel cancer-specific vaccine candidate that can elicit EGFRvIII-specific cellular immunity, for the purpose of targeting EGFRvIII positive cancers that are resistant to conventional therapies.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Cancer Vaccines/therapeutic use , Carcinoma, Squamous Cell/metabolism , ErbB Receptors/metabolism , Animals , Cancer Vaccines/immunology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/therapy , Female , Immunotherapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
14.
Sci Rep ; 8(1): 7012, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29725089

ABSTRACT

Radiation therapy is a source of tumor antigen release that has the potential to serve as an endogenous tumor vaccination event. In preclinical models radiation therapy synergizes with checkpoint inhibitors to cure tumors via CD8 T cell responses. To evaluate the immune response initiated by radiation therapy, we used a range of approaches to block the pre-existing immune response artifact initiated by tumor implantation. We demonstrate that blocking immune responses at tumor implantation blocks development of a tumor-resident antigen specific T cell population and prevents tumor cure by radiation therapy combined with checkpoint immunotherapy. These data demonstrate that this treatment combination relies on a pre-existing immune response to cure tumors, and may not be a solution for patients without pre-existing immunity.


Subject(s)
Adenocarcinoma/drug therapy , Adenocarcinoma/radiotherapy , Combined Modality Therapy/methods , Immunologic Factors/administration & dosage , Immunotherapy/methods , Radiotherapy/methods , Animals , Antineoplastic Agents/administration & dosage , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/radiotherapy , Disease Models, Animal , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasm Transplantation , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/radiotherapy , Transplantation, Heterologous , Treatment Outcome
15.
J Immunol ; 200(1): 177-185, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29150567

ABSTRACT

Although prophylactic vaccines provide protective humoral immunity against infectious agents, vaccines that elicit potent CD8 T cell responses are valuable tools to shape and drive cellular immunity against cancer and intracellular infection. In particular, IFN-γ-polarized cytotoxic CD8 T cell immunity is considered optimal for protective immunity against intracellular Ags. Suppressor of cytokine signaling (SOCS)1 is a cross-functional negative regulator of TLR and cytokine receptor signaling via degradation of the receptor-signaling complex. We hypothesized that loss of SOCS1 in dendritic cells (DCs) would improve T cell responses by accentuating IFN-γ-directed immune responses. We tested this hypothesis using a recombinant Listeria monocytogenes vaccine platform that targets CD11c+ DCs in mice in which SOCS1 is selectively deleted in all CD11c+ cells. Unexpectedly, in mice lacking SOCS1 expression in CD11c+ cells, we observed a decrease in CD8+ T cell response to the L. monocytogenes vaccine. NK cell responses were also decreased in mice lacking SOCS1 expression in CD11c+ cells but did not explain the defect in CD8+ T cell immunity. We found that DCs lacking SOCS1 expression were functional in driving Ag-specific CD8+ T cell expansion in vitro but that this process was defective following infection in vivo. Instead, monocyte-derived innate TNF-α and inducible NO synthase-producing DCs dominated the antibacterial response. Thus, loss of SOCS1 in CD11c+ cells skewed the balance of immune response to infection by increasing innate responses while decreasing Ag-specific adaptive responses to infectious Ags.


Subject(s)
Bacterial Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Killer Cells, Natural/immunology , Listeria monocytogenes/immunology , Listeriosis/immunology , Suppressor of Cytokine Signaling 1 Protein/metabolism , Adaptive Immunity , Animals , CD11c Antigen/metabolism , CD8-Positive T-Lymphocytes/microbiology , Cells, Cultured , Cytotoxicity, Immunologic , Humans , Immunity, Innate , Interferon-gamma/metabolism , Killer Cells, Natural/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Suppressor of Cytokine Signaling 1 Protein/genetics
16.
Oncotarget ; 7(48): 78653-78666, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27602953

ABSTRACT

Radiation therapy provides a means to kill large numbers of cancer cells in a controlled location resulting in the release of tumor-specific antigens and endogenous adjuvants. However, by activating pathways involved in apoptotic cell recognition and phagocytosis, irradiated cancer cells engender suppressive phenotypes in macrophages. We demonstrate that the macrophage-specific phagocytic receptor, Mertk is upregulated in macrophages in the tumor following radiation therapy. Ligation of Mertk on macrophages results in anti-inflammatory cytokine responses via NF-kB p50 upregulation, which in turn limits tumor control following radiation therapy. We demonstrate that in immunogenic tumors, loss of Mertk is sufficient to permit tumor cure following radiation therapy. However, in poorly immunogenic tumors, TGFß inhibition is also required to result in tumor cure following radiation therapy. These data demonstrate that Mertk is a highly specific target whose absence permits tumor control in combination with radiation therapy.


Subject(s)
Macrophages/radiation effects , Neoplasm Recurrence, Local , Neoplasms, Experimental/radiotherapy , c-Mer Tyrosine Kinase/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Azabicyclo Compounds/pharmacology , Cell Line, Tumor , Coculture Techniques , Cytokines/metabolism , Macrophages/enzymology , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Neoplasms, Experimental/enzymology , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , RAW 264.7 Cells , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/metabolism , Recombinant Fusion Proteins/pharmacology , Signal Transduction/radiation effects , Time Factors , Transforming Growth Factor beta/metabolism , c-Mer Tyrosine Kinase/antagonists & inhibitors , c-Mer Tyrosine Kinase/deficiency , c-Mer Tyrosine Kinase/genetics
17.
PLoS One ; 8(5): e64878, 2013.
Article in English | MEDLINE | ID: mdl-23717671

ABSTRACT

The ability of memory CD8+ T cells to rapidly proliferate and acquire cytolytic activity is critical for protective immunity against intracellular pathogens. The signals that control this recall response remain unclear. We show that CD40L production by memory CD8+ T cells themselves is an essential catalyst for secondary expansion when systemic inflammation is limited. Secondary immunization accompanied by high levels of systemic inflammation results in CD8+ T cell secondary expansion independent of CD4+ T cells and CD40-CD40L signaling. Conversely, when the inflammatory response is limited, memory CD8+ T cell secondary expansion requires CD40L-producing cells, and memory CD8+ T cells can provide this signal. These results demonstrate that vaccination regimens differ in their dependence on CD40L-expressing CD8+ T cells for secondary expansion, and propose that CD40L-expression by CD8+ T cells is a fail-safe mechanism that can promote memory CD8+ T cell secondary expansion when inflammation is limited.


Subject(s)
CD40 Antigens/metabolism , CD40 Ligand/metabolism , CD8-Positive T-Lymphocytes/immunology , Ampicillin/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Vaccines , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation , Feedback, Physiological , Immunization, Secondary , Immunologic Memory , Listeria monocytogenes/drug effects , Listeria monocytogenes/immunology , Listeriosis/immunology , Listeriosis/microbiology , Listeriosis/prevention & control , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Vaccination , Vaccinia virus/immunology , Viral Vaccines
18.
Biometals ; 25(3): 577-86, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22491898

ABSTRACT

RNAß affects the transcription process of the iron transport-biosynthesis operon encoded in the pJM1 plasmid of Vibrio anguillarum at a stem-loop structure located in the intergenic region between the fatA and angR genes. The net result is a higher level of the fatD, fatC, fatB, and fatA moiety as compared with the longer transcript encoding those genes as well as the angR and angT genes. In this work we report the secondary structure of RNAß determined by treatment with single and double strand specific ribonucleases as well as lead acetate followed by sequencing. The generated in vitro structural data indicated that three of the four previously described loops are in agreement with the original model, however, the alteration of loop IV as well as several other structural differences in the overall shape of the molecule led to the necessity of creating a new in silico model. Using the sites of mutations in the various loops we modeled the change in the RNAß secondary structure induced by those mutations. Mutations of loops III and IV to their complementary bases alter the overall structure of the RNAß significantly and increase its function while mutations in loops I and II have the opposite effect, the structure is unchanged but the activity of RNAß decreases. This indicates that loops I and II are necessary for interaction with the target mRNA. It is possible that the structural rearrangement introduced by mutations in loops III and IV promote activity and binding in loops I and II through reducing steric hindrance or increased binding to the target. This result also indicates that the exact relative positions of the critical loops are unimportant for activity.


Subject(s)
Iron/metabolism , Operon/genetics , RNA, Antisense/chemistry , RNA, Antisense/genetics , Vibrio/genetics , Vibrio/metabolism , Biological Transport , Nucleic Acid Conformation , Plasmids/genetics
19.
J Bacteriol ; 194(8): 1897-911, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22307757

ABSTRACT

TonB systems transduce the proton motive force of the cytoplasmic membrane to energize substrate transport through a specific TonB-dependent transporter across the outer membrane. Vibrio vulnificus, an opportunistic marine pathogen that can cause a fatal septicemic disease in humans and eels, possesses three TonB systems. While the TonB1 and TonB2 systems are iron regulated, the TonB3 system is induced when the bacterium grows in human serum. In this work we have determined the essential roles of the leucine-responsive protein (Lrp) and cyclic AMP (cAMP) receptor protein (CRP) in the transcriptional activation of this system. Whereas Lrp shows at least four very distinctive DNA binding regions spread out from position -59 to -509, cAMP-CRP binds exclusively in a region centered at position -122.5 from the start point of the transcription. Our results suggest that both proteins bind simultaneously to the region closer to the RNA polymerase binding site. Importantly, we report that the TonB3 system is induced not only by serum but also during growth in minimal medium with glycerol as the sole carbon source and low concentrations of Casamino Acids. In addition to catabolite repression by glucose, l-leucine acts by inhibiting the binding of Lrp to the promoter region, hence preventing transcription of the TonB3 operon. Thus, this TonB system is under the direct control of two global regulators that can integrate different environmental signals (i.e., glucose starvation and the transition between "feast" and "famine"). These results shed light on new mechanisms of regulation for a TonB system that could be widespread in other organisms.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Leucine-Responsive Regulatory Protein/metabolism , Membrane Proteins/metabolism , Receptors, Cyclic AMP/metabolism , Vibrio vulnificus/metabolism , Animals , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Humans , Iron Overload , Leucine-Responsive Regulatory Protein/genetics , Membrane Proteins/genetics , Mice , Mutation , Operon , Receptors, Cyclic AMP/genetics , Resin Cements , Vibrio Infections/microbiology , Vibrio vulnificus/genetics
20.
Infect Immun ; 76(9): 4019-37, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18573903

ABSTRACT

Vibrio vulnificus multiplies rapidly in host tissues under iron-overloaded conditions. To understand the effects of iron in the physiology of this pathogen, we performed a genome-wide transcriptional analysis of V. vulnificus growing at three different iron concentrations, i.e., iron-limiting [Trypticase soy broth with 1.5% NaCl (TSBS) plus ethylenediamine-di-(o-hydroxyphenylacetic) acid (EDDA)], low-iron (1 microg Fe/ml; TSBS), and iron-rich (38 microg Fe/ml; TSBS plus ferric ammonium citrate) concentrations. A few genes were upregulated under the last two conditions, while several genes were expressed differentially under only one of them. A gene upregulated under both conditions encodes the outer membrane porin, OmpH, while others are related to the biosynthesis of amino sugars. An ompH mutant showed sensitivity to sodium dodecyl sulfate (SDS) and polymyxin B and also had a reduced competitive index compared with the wild type in the iron-overloaded mice. Under iron-limiting conditions, two of the TonB systems involved in vulnibactin transport were induced. These genes were essential for virulence in the iron-overloaded mice inoculated subcutaneously, underscoring the importance of active iron transport in infection, even under the high-iron conditions of this animal model. Furthermore, we demonstrated that a RyhB homologue is also essential for virulence in the iron-overloaded mouse. This novel information on the role of genes induced under iron limitation in the iron-overloaded mouse model and the finding of new genes with putative roles in virulence that are expressed only under iron-rich conditions shed light on the many strategies used by this pathogen to multiply rapidly in the susceptible host.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Bacterial , Iron/metabolism , Vibrio vulnificus/genetics , Vibrio vulnificus/metabolism , Animals , Bacterial Outer Membrane Proteins/biosynthesis , Bacterial Proteins/biosynthesis , Gene Deletion , Genetic Complementation Test , Membrane Proteins/biosynthesis , Mice , Oligonucleotide Array Sequence Analysis , Vibrio Infections/microbiology , Virulence , Virulence Factors/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...