Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 150: 62-69, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29268116

ABSTRACT

Improvements in plant physiological performance by means of biochar application in soils contaminated by multi-elements are determinants of agroecosystem functioning. This study analyzed the effects of bamboo-derived biochar on root nodulation and plant growth in a moderately acidic Andosol (pH = 5.56) contaminated with multi-elements during a 70-day investigation of soybean growth. Bamboo biochar that had been pyrolyzed at a temperature below 500°C was applied to soils at three different and moderately high rates (5%, 10%, and 15%, w/w). Biochar amendment beyond 5% stimulated root nodulation as well as soybean growth. The nodule weight per root system was significantly enhanced by 186% and 243% over the control at the 10% and 15% addition rates, respectively. The primary explanation for these stimulatory effects was attributed to an increase in the K and Mo supplies for plant uptake that was induced by the biochar application, whereas the increased availability of P contributed to a lesser extent. Leaf CO2 assimilation rate was slightly enhanced at the highest application rate, but this enhancement was not associated with an increase in biomass. The incorporation of biochar into the soil reduced extractable-NH4NO3 Cd, Cu, Mn, Ni, and Zn, but not Pb, regardless of the application dose. This change was accompanied by a significant (P < 0.05) suppression of the uptake od trace elements in soybean shoots at the optimum application rate (10%); the degree of reduction followed this order: Pb>Mn>Cd>Zn>Cu>Ni. The increase in soil pH and the diffusion/adsorption of trace elements onto the biochar may have contributed to the lowering of the concentration of trace elements in the soil as well as in soybean shoots.


Subject(s)
Charcoal/chemistry , Glycine max/drug effects , Plant Root Nodulation/drug effects , Soil Pollutants/analysis , Soil/chemistry , Trace Elements/analysis , Adsorption , Biological Availability , Biomass , Sasa , Glycine max/physiology
2.
Environ Sci Pollut Res Int ; 24(23): 19347-19356, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28669096

ABSTRACT

The effect of varied concentrations of thermal-treated oyster shells (TOS) on the suppression of cadmium (Cd) and copper (Cu) uptake and translocation into the shoots of maize plants was examined. Maize plants were grown in Cd- and Cu-contaminated Andosol for 70 days. The concentration of mobile Cd (extracted with 1 M NH4NO3) decreased with increasing TOS applications, whereas an increase in the concentration of mobile Cu in soil resulted from cumulative TOS additions. The addition of 2% TOS had no prohibitive effects on Cd uptake in maize shoots, but the 4 and 8% TOS treatments decreased Cd accumulation in shoots by 41 and 59%, respectively. The possible mechanisms underlying Cd suppression in maize shoots were the enhanced Cd adsorption caused by pH-induced increases in the negative charge of the soil and the antagonistic effects of Ca resulting from competition for exchange sites at the root surface. Cu accumulation in maize shoots increased by 34, 51, and 53% with the addition of 2, 4, and 8% TOS, respectively, but this increase was not observed for Cd accumulation. These results suggested that, in multi-metal-contaminated soils, attention should be paid to the potential mobility of target metals and the pH of the contaminated soil. From a plant physiological perspective, contaminated soils slightly reduced photosynthetic performance. However, the addition of TOS to the soil at levels higher than 4% substantially decreased photosynthetic performance, indicating that CaO-based suppressants at critical loads might damage the net photosynthetic rates of sensitive maize plants.


Subject(s)
Animal Shells/chemistry , Cadmium/chemistry , Copper/chemistry , Ostreidae , Zea mays/chemistry , Adsorption/drug effects , Animals , Cadmium/metabolism , Calcium/pharmacology , Copper/metabolism , Hydrogen-Ion Concentration , Plant Shoots/chemistry , Plant Shoots/drug effects , Soil Pollutants/chemistry , Temperature , Zea mays/drug effects
3.
J Environ Manage ; 150: 103-110, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25438117

ABSTRACT

The physicochemical properties of oyster shell-derived adsorbents prepared by calcination at different temperatures were characterized by elemental analysis, specific surface area, particle size distribution, X-ray diffraction, and scanning electron microscopy. The pH value in natural oyster shell increased from 9 to 12.7 following calcination above 750 °C. All of the oyster shell-derived adsorbents exhibited a BET surface area that ranged from 1.8 to 64.6 m(2)/g. Clearly, the proportion of particles within the ranges 25-50 µm and 50-100 µm increased after calcination, regardless of calcination temperature. The adsorption equilibrium and kinetics of cadmium (Cd) were investigated, and the mechanisms of sorption discussed. Experimental equilibrium data were fitted to a Langmuir adsorption isotherm model. Most Cd adsorption occurred during the initial hours of contact time, and a pseudo-second-order kinetic model best fitted the adsorption process. Cd sorption profiles indicated an initial, low Cd sorption region (25.25-32.36 mg/g) that was associated with calcination temperatures of up to 650 °C for 2 h, and a second region that contributed to high Cd sorption from 750 °C, with the maximum sorption capacity reaching a value of 1666.67 mg/g at 900 °C. The high Cd-removal capacity of oyster shell-derived adsorbents above 750 °C is attributed to their enhanced specific surface area, their material porosity, the bulk precipitation of Cd hydroxide and otavite on shell fragments, the formation of ettringite as a secondary precipitate, and ion exchange via Ca ions. This study highlights the effectiveness of calcined oyster shells in Cd removal from highly contaminated water and wastewater.


Subject(s)
Cadmium/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Animals , Humans , Hydrogen-Ion Concentration , Ostreidae , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...