Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Nat Commun ; 10(1): 3593, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31399564

ABSTRACT

Filopodia, dynamic membrane protrusions driven by polymerization of an actin filament core, can adhere to the extracellular matrix and experience both external and cell-generated pulling forces. The role of such forces in filopodia adhesion is however insufficiently understood. Here, we study filopodia induced by overexpression of myosin X, typical for cancer cells. The lifetime of such filopodia positively correlates with the presence of myosin IIA filaments at the filopodia bases. Application of pulling forces to the filopodia tips through attached fibronectin-coated laser-trapped beads results in sustained growth of the filopodia. Pharmacological inhibition or knockdown of myosin IIA abolishes the filopodia adhesion to the beads. Formin inhibitor SMIFH2, which causes detachment of actin filaments from formin molecules, produces similar effect. Thus, centripetal force generated by myosin IIA filaments at the base of filopodium and transmitted to the tip through actin core in a formin-dependent fashion is required for filopodia adhesion.


Subject(s)
Formins/metabolism , Myosins/metabolism , Neoplasms/metabolism , Nonmuscle Myosin Type IIA/metabolism , Pseudopodia/physiology , Actin Cytoskeleton , Animals , COS Cells , Chlorocebus aethiops , Formins/antagonists & inhibitors , Formins/genetics , Formins/ultrastructure , Gene Expression Regulation, Neoplastic , HeLa Cells , Humans , Microfilament Proteins , Nonmuscle Myosin Type IIA/antagonists & inhibitors , Nonmuscle Myosin Type IIA/genetics , Nonmuscle Myosin Type IIA/ultrastructure , Pseudopodia/pathology , Thiones/pharmacology , Uracil/analogs & derivatives , Uracil/pharmacology
2.
Proc Natl Acad Sci U S A ; 95(8): 4362-7, 1998 Apr 14.
Article in English | MEDLINE | ID: mdl-9539742

ABSTRACT

We investigated actin cytoskeletal and adhesion molecule dynamics during collisions of leading lamellae of nontransformed and oncogene-transformed fibroblasts. By using real-time video microscopy, it was found that during lamellar collision there was considerable overlapping of leading lamellae followed by subsequent retraction. Overlapping of nontransformed fibroblasts was accompanied by formation of beta-catenin-positive contact structures organized into strands oriented parallel to the long axis of the cell that were associated with bundles of actin filaments. Maintenance of such cell-cell contact structures critically depended on the contractility of actin cytoskeleton, as inhibition of contractility with serum-free medium or 2,3-butanedione 2-monoxime (BDM) resulted in loss of strand formation. Strand formation was recovered when cells in serum-free medium were incubated with the microtubule inhibitor nocodazole, which is known to increase contractility. Oncogene-transformed fibroblasts reacted to collisions with responses similar to nontransformed fibroblasts but did not develop well-organized cell-cell contacts. A model is presented to describe how differences in the organization of the actin cytoskeleton could account for the structurally distinct responses to cell-cell contact by polarized fibroblastic cells versus nonpolarized epithelial cells.


Subject(s)
Actins/physiology , Cell Communication/physiology , Cytoskeleton/physiology , Intercellular Junctions/physiology , Myosins/physiology , Trans-Activators , Animals , Cadherins/analysis , Cell Line , Cytoskeletal Proteins/analysis , Diacetyl/analogs & derivatives , Diacetyl/pharmacology , Fibroblasts/cytology , Fibroblasts/physiology , Humans , Intercellular Junctions/ultrastructure , Myosins/antagonists & inhibitors , Rats , beta Catenin
SELECTION OF CITATIONS
SEARCH DETAIL
...