Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 143: 105950, 2023 07.
Article in English | MEDLINE | ID: mdl-37285773

ABSTRACT

With global demand for 3D printed medical devices on the rise, the search for safer, inexpensive, and sustainable methods is timely. Herein, we assessed the practicality of the material extrusion process for acrylic denture bases of which successful outcomes can be extended to implant surgical guides, orthodontic splints, impression trays, record bases and obturators for cleft palates or other maxillary defects. Representative materials comprising denture prototypes and test samples were designed and built with in-house polymethylmethacrylate filaments using varying print directions (PDs), layer heights (LHs) and reinforcements (RFs) with short glass fiber. The study undertook a comprehensive evaluation of the materials to determine their flexural, fracture, and thermal properties. Additional analyses for tensile and compressive properties, chemical composition, residual monomer, and surface roughness (Ra) were completed for parts with optimum parameters. Micrographic analysis of the acrylic composites revealed adequate fiber-matrix compatibility and predictably, their mechanical properties improved simultaneously with RFs and decreased LHs. Fiber reinforcement also improved the overall thermal conductivity of the materials. Ra, on the other hand, improved visibly with decreased RFs and LHs and the prototypes were effortlessly polished and characterized with veneering composites to mimic gingival tissues. In terms of chemical stability, the residual methyl methacrylate monomer contents are well below standards threshold for biological reactions. Notably, 5 vol% acrylic composites built with 0.05 mm LH in 0° on z-axis produced optimum properties that are superior to those of conventional acrylic, milled acrylic and 3D printed photopolymers. Finite element modeling successfully replicated the tensile properties of the prototypes. It may well be argued that the material extrusion process is cost-effective; however, the speed of manufacturing could be longer than that of established methods. Although the mean Ra is within an acceptable range, mandatory manual finishing and aesthetic pigmentation are required for long-term intraoral use. At a proof-of-concept level, it is evident that the material extrusion process can be applied to build inexpensive, safe, and robust thermoplastic acrylic devices. The broad outcomes of this novel study are equally worthy of academic reflection, and further translation to the clinic.


Subject(s)
Acrylic Resins , Polymethyl Methacrylate , Acrylic Resins/chemistry , Feasibility Studies , Polymethyl Methacrylate/chemistry , Methylmethacrylate , Denture Bases , Materials Testing , Surface Properties
2.
Polymers (Basel) ; 14(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36559832

ABSTRACT

The objective of this study was to assess the effect of stacking on the dimensional and full-arch accuracy of 3D-printed models, utilising a standardised assessment methodology. A previously validated methodology involving a standard tessellation language image (STL) reference model, comprising seven spheres on a horseshoe base resembling a dental arch, was used. Six 3D-designed STL models were prepared, optimised, and stacked horizontally using 3D Sprint software. The stacking file was transferred to the NextDent 5100 printer to build the physical models. To assess accuracy, a coordinate measuring machine (CMM) measured the diameter of the spheres n=210, and twenty-one vectors extended between the centres of each of the seven spheres (n = 630). When compared to the reference model, significant differences were observed for dimensional (p = 0.006) and full-arch accuracy (p = 0.006) for all stacked models. Additionally, significant differences were observed between the stacked models for the dimensional accuracy between the posterior (p = 0.015), left posterior (p = 0.005) and anteroposterior (p = 0.002). The maximum contraction was observed in the fourth stacked model, which demonstrated the highest median deviation and least precision within the full-arch (MD = 666 µm, IQR = 55 µm), left posterior (MD = 136 µm, IQR = 12 µm), posterior (MD = 177 µm, IQR = 14 µm) and anteroposterior (MD = 179 µm, IQR = 16 µm) arch segments. In general, the anterior and left posterior arch segments recorded the highest contractions with a median deviation of 34 µm and 29 µm, and precision of 32 µm and 22 µm, respectively. Statistically significant differences were observed between the stacked models in terms of dimensional accuracy that were within clinically acceptable thresholds. The greatest contraction was noted in the fourth model, displaying the least full-arch accuracy compared to the other models. Stacked, additively manufactured, full arch models are a viable alternative for diagnostic, orthodontic, and single-unit prosthodontic applications. In contrast, caution should be exercised when utilising stacked models for full arch high accuracy prosthodontic applications. Further research is needed to assess the impact of additional variables including different printers and resins.

3.
J Clin Med ; 9(10)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092047

ABSTRACT

The use of additive manufacturing in dentistry has exponentially increased with dental model construction being the most common use of the technology. Henceforth, identifying the accuracy of additively manufactured dental models is critical. The objective of this study was to systematically review the literature and evaluate the accuracy of full-arch dental models manufactured using different 3D printing technologies. Seven databases were searched, and 2209 articles initially identified of which twenty-eight studies fulfilling the inclusion criteria were analysed. A meta-analysis was not possible due to unclear reporting and heterogeneity of studies. Stereolithography (SLA) was the most investigated technology, followed by digital light processing (DLP). Accuracy of 3D printed models varied widely between <100 to >500 µm with the majority of models deemed of clinically acceptable accuracy. The smallest (3.3 µm) and largest (579 µm) mean errors were produced by SLA printers. For DLP, majority of investigated printers (n = 6/8) produced models with <100 µm accuracy. Manufacturing parameters, including layer thickness, base design, postprocessing and storage, significantly influenced the model's accuracy. Majority of studies supported the use of 3D printed dental models. Nonetheless, models deemed clinically acceptable for orthodontic purposes may not necessarily be acceptable for the prosthodontic workflow or applications requiring high accuracy.

4.
Compend Contin Educ Dent ; 40(10): e7-e11, 2019.
Article in English | MEDLINE | ID: mdl-31730361

ABSTRACT

Characterization of the double bond conversion of acrylic resins is considered critical in the evaluation of dental materials due to the propensity of end-use devices to accumulate residual monomer and degradation products that can cause local and systemic side effects in high doses. In this study, the authors examine two different acrylic-based photopolymers indicated for 3D printing of dental prostheses using Fourier transform infrared spectroscopy: a denture base material comprising ≥75% ethoxylated bisphenol A dimethacrylate, and a crown-and-bridge material composed of >60% proprietary methacrylic oligomer and 15%-25% 2-hydroxyethyl methacrylate. Infrared spectroscopy data showed a conversion rate (240 s) of 52.37 ± 1.05% for the former material and 45.36 ± 1.41% for the latter. Compared to traditional acrylic resins, both materials exhibited a considerably lower degree of conversion. With limited scientific data available on the clinical performance of 3D printing materials in general, additional evidence is needed to ascertain their in vivo performance in the long-term.


Subject(s)
Acrylic Resins , Dental Bonding , Dental Materials , Denture Bases , Materials Testing , Polymethyl Methacrylate , Printing, Three-Dimensional
5.
Acta Biomater ; 78: 64-77, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30099197

ABSTRACT

The paucity of information on the biological risks of photopolymers in additive manufacturing is a major challenge for the uptake of the technology in the construction of medical devices in dentistry. In this paper, the biocompatibility of methacrylates for denture bases, splints, retainers and surgical guides were evaluated using the innovative zebrafish embryo model, which is providing a high potential for toxicity profiling of photopolymers and has high genetic similarity to humans. Toxicological data obtained confirmed gradations of toxicity influenced by ethanol treatment, exposure scenarios and extraction vehicles. In direct exposure tests, juvenile fish exposed to non-treated methacrylates in ultrapure water showed accelerated toxicity endpoints compared to fish in transparent E3 medium. Similarly, toxic extracts induced mostly acute responses (embryonic mortality) in contrast to cumulative chronic (sublethal and teratogenic effects) in direct exposure. Methacrylates composed of >60% Ethoxylated bisphenol A dimethacrylate produced a relatively lower conversion rate in FTIR spectroscopy, but were safe in zebrafish bioassays after ethanol treatment. The study affirms that biocompatibility was influenced primarily by physico-chemical characteristics of the materials, which subsequently influenced their residual monomer content before and after immersion in ethanol. Given the precautionary implications of the study, we propose a 3-tiered approach i.e. using approved materials, apposite manufacturing parameters and post-processing techniques that together guarantee optimal results for medical devices. STATEMENT OF SIGNIFICANCE: This study is timely and relevant since there is limited published literature that precisely describes the toxicological properties of additively manufactured methacrylates despite their increased popularity for medical devices. While it is generally accepted that the zebrafish excels as a model system for developmental toxicity, a further examination of its utility in this study using different protocols provides basis for its consideration and adoption at a crucial time when there is a lack of consensus regarding the most suited biological assessment methods for medical devices.


Subject(s)
Dentistry , Equipment and Supplies , Methacrylates/toxicity , Toxicity Tests , Animals , Biological Assay , Dentures , Embryo, Nonmammalian/drug effects , Endpoint Determination , Larva/drug effects , Zebrafish/embryology
6.
Eur J Prosthodont Restor Dent ; 25(2): 73-78, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28590092

ABSTRACT

Additive manufacturing (AM) often referred to as 3D printing (3DP) has shown promise of being significantly viable in the construction of cobalt-chromium removable partial denture (RPD) frameworks. The current paper seeks to discuss AM technologies (photopolymerization processes and selective laser melting) and review their scope. The review also discusses the clinical relevance of cobalt-chromium RPD frameworks. All relevant publications in English over the last 10 years, when the first 3D-printed RPD framework was reported, are examined. The review notes that AM offers significant benefits in terms of speed of the manufacturing processes however cost and other aspects of current technologies remain a hindrance.


Subject(s)
Chromium Alloys , Denture Design/methods , Denture, Partial, Removable , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...