Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
2.
Drug Chem Toxicol ; : 1-13, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727006

ABSTRACT

Chromium (Cr) toxicity, even at low concentrations, poses a significant health threat to various environmental species. Cr is found in the environment in two oxidation states that differ in their bioavailability and toxicity. While Cr(III) is essential for glucose metabolism, the oxyanion chromate Cr(VI) is mostly of anthropogenic origin, toxic, and carcinogenic. The sources of Cr in the environment are multiple, including geochemical processes, disposal of industrial waste, and industrial wastewater. Cr pollution may consequently impact the health of numerous plant and animal species. Despite that, the number of published studies on Cr toxicity across environmental species remained mainly unchanged over the past two decades. The presence of Cr in the environment affects several plant physiological processes, including germination or photosynthesis, and consequently impacts growth, and lowers agricultural production and quality. Recent research has also reported the toxic effects of Cr in different aquatic and terrestrial organisms. Whereas some species showed sensitivity, others exhibited tolerance. Hence, this review discusses the understanding of the ecotoxicological effect of Cr on different plant and animal groups and serves as a concise source of consolidated information and a valuable reference for researchers and policymakers in an understanding of Cr toxicity. Future directions should focus on expanding research efforts to understand the mechanisms underlying species-specific responses to Cr pollution.

3.
Environ Int ; 188: 108736, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759545

ABSTRACT

The presence of microplastics (MPs) is increasing at a dramatic rate globally, posing risks for exposure and subsequent potential adverse effects on human health. Apart from being physical objects, MP particles contain thousands of plastic-associated chemicals (i.e., monomers, chemical additives, and non-intentionally added substances) captured within the polymer matrix. These chemicals are often migrating from MPs and can be found in various environmental matrices and human food chains; increasing the risks for exposure and health effects. In addition to the physical and chemical attributes of MPs, plastic surfaces effectively bind exogenous chemicals, including environmental pollutants (e.g., heavy metals, persistent organic pollutants). Therefore, MPs can act as vectors of environmental pollution across air, drinking water, and food, further amplifying health risks posed by MP exposure. Critically, fragmentation of plastics in the environment increases the risk for interactions with cells, increases the presence of available surfaces to leach plastic-associated chemicals, and adsorb and transfer environmental pollutants. Hence, this review proposes the so-called triple exposure nexus approach to comprehensively map existing knowledge on interconnected health effects of MP particles, plastic-associated chemicals, and environmental pollutants. Based on the available data, there is a large knowledge gap in regard to the interactions and cumulative health effects of the triple exposure nexus. Each component of the triple nexus is known to induce genotoxicity, inflammation, and endocrine disruption, but knowledge about long-term and inter-individual health effects is lacking. Furthermore, MPs are not readily excreted from organisms after ingestion and they have been found accumulated in human blood, cardiac tissue, placenta, etc. Even though the number of studies on MPs-associated health impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' effects on human health in order to address existing and future knowledge gaps.


Subject(s)
Environmental Exposure , Environmental Pollutants , Microplastics , Plastics , Humans , Microplastics/toxicity , Microplastics/analysis , Environmental Pollutants/analysis , Plastics/toxicity , Environmental Pollution
4.
J Hazard Mater ; 471: 134401, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38678714

ABSTRACT

Tire wear particles (TWP) stand out as a major contributor to microplastic pollution, yet their environmental impact remains inadequately understood. This study delves into the cocktail effects of TWP leachates, employing molecular, cellular, and organismal assessments on diverse biological models. Extracted in artificial seawater and analyzed for metals and organic compounds, TWP leachates revealed the presence of polyaromatic hydrocarbons and 4-tert-octylphenol. Exposure to TWP leachates (1.5 to 1000 mg peq L-1) inhibited algae growth and induced zebrafish embryotoxicity, pigment alterations, and behavioral changes. Cell painting uncovered pro-apoptotic changes, while mechanism-specific gene-reporter assays highlighted endocrine-disrupting potential, particularly antiandrogenic effects. Although heavy metals like zinc have been suggested as major players in TWP leachate toxicity, this study emphasizes water-leachable organic compounds as the primary causative agents of observed acute toxicity. The findings underscore the need to reduce TWP pollution in aquatic systems and enhance regulations governing highly toxic tire additives.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Embryo, Nonmammalian/drug effects , Endocrine Disruptors/toxicity , Models, Biological
5.
Sci Total Environ ; 920: 170759, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38336065

ABSTRACT

Aquatic animals and consumers of aquatic animals are exposed to increasingly complex mixtures of known and as-yet-unknown chemicals with dioxin-like toxicities in the water cycle. Effect- and cell-based bioanalysis can cover known and yet unknown dioxin and dioxin-like compounds as well as complex mixtures thereof but need to be standardized and integrated into international guidelines for environmental testing. In an international laboratory testing (ILT) following ISO/CD 24295 as standard procedure for rat cell-based DR CALUX un-spiked and spiked extracts of drinking-, surface-, and wastewater were validated to generate precision data for the development of the full ISO-standard. We found acceptable repeatability and reproducibility ranges below 36 % by DR CALUX bioassay for the tested un-spiked and spiked water of different origins. The presence of 17 PCDD/Fs and 12 dioxin-like PCBs was also confirmed by congener-specific GC-HRMS analysis. We compared the sum of dioxin-like activity levels measured by DR CALUX bioassay (expressed in 2,3,7,8-TCDD Bioanalytical Equivalents, BEQ; ISO 23196, 2022) with the obtained GC-HRMS chemical analysis results converted to toxic equivalents (TEQ; van den Berg et al., 2013).


Subject(s)
Dioxins , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Rats , Animals , Polychlorinated Dibenzodioxins/analysis , Dioxins/toxicity , Dioxins/analysis , Wastewater , Reproducibility of Results , Dibenzofurans/analysis , Rivers , Luciferases , Polychlorinated Biphenyls/analysis , Biological Assay/methods , Dibenzofurans, Polychlorinated/analysis
6.
Environ Int ; 183: 108412, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38183898

ABSTRACT

Due to their exceptional properties and cost effectiveness, polyamides or nylons have emerged as widely used materials, revolutionizing diverse industries, including industrial 3D printing or additive manufacturing (AM). Powder-based AM technologies employ tonnes of polyamide microplastics to produce complex components every year. However, the lack of comprehensive toxicity assessment of particulate polyamides and polyamide-associated chemicals, especially in the light of the global microplastics crisis, calls for urgent action. This study investigated the physicochemical properties of polyamide-12 microplastics used in AM, and assessed a number of toxicity endpoints focusing on inflammation, immunometabolism, genotoxicity, aryl hydrocarbon receptor (AhR) activation, endocrine disruption, and cell morphology. Specifically, microplastics examination by means of field emission scanning electron microscopy revealed that work flow reuse of material created a fraction of smaller particles with an average size of 1-5 µm, a size range readily available for uptake by human cells. Moreover, chemical analysis by means of gas chromatography high-resolution mass spectrometry detected several polyamide-associated chemicals including starting material, plasticizer, thermal stabilizer/antioxidant, and migrating slip additive. Even if polyamide particles and chemicals did not induce an acute inflammatory response, repeated and prolonged exposure of human primary macrophages disclosed a steady increase in the levels of proinflammatory chemokine Interleukin-8 (IL-8/CXCL-8). Moreover, targeted metabolomics disclosed that polyamide particles modulated the kynurenine pathway and some of its key metabolites. The p53-responsive luciferase reporter gene assay showed that particles per se were able to activate p53, being indicative of a genotoxic stress. Polyamide-associated chemicals triggered moderate activation of AhR and elicited anti-androgenic activity. Finally, a high-throughput and non-targeted morphological profiling by Cell Painting assay outlined major sites of bioactivity of polyamide-associated chemicals and indicated putative mechanisms of toxicity in the cells. These findings reveal that the increasing use of polyamide microplastics may pose a potential health risk for the exposed individuals, and it merits more attention.


Subject(s)
Nylons , Water Pollutants, Chemical , Humans , Microplastics/toxicity , Plastics/toxicity , Tumor Suppressor Protein p53 , Plasticizers , Water Pollutants, Chemical/analysis
7.
Front Immunol ; 14: 1178434, 2023.
Article in English | MEDLINE | ID: mdl-37143682

ABSTRACT

Micro- and nanoplastics (MNPs) are emerging pollutants with scarcely investigated effects on human innate immunity. If they follow a similar course of action as other, more thoroughly investigated particulates, MNPs may penetrate epithelial barriers, potentially triggering a cascade of signaling events leading to cell damage and inflammation. Inflammasomes are intracellular multiprotein complexes and stimulus-induced sensors critical for mounting inflammatory responses upon recognition of pathogen- or damage-associated molecular patterns. Among these, the NLRP3 inflammasome is the most studied in terms of activation via particulates. However, studies delineating the ability of MNPs to affect NLRP3 inflammasome activation are still rare. In this review, we address the issue of MNPs source and fate, highlight the main concepts of inflammasome activation via particulates, and explore recent advances in using inflammasome activation for assessment of MNP immunotoxicity. We also discuss the impact of co-exposure and MNP complex chemistry in potential inflammasome activation. Development of robust biological sensors is crucial in order to maximize global efforts to effectively address and mitigate risks that MNPs pose for human health.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Microplastics , Immunity, Innate , Inflammation
8.
Environ Pollut ; 322: 121174, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36746289

ABSTRACT

Nickel (Ni) is a widespread environmental pollutant commonly released into effluent due to industrial activities, the use of fuels, or wastewater disposal. Many studies confirm the toxic effects of this heavy metal. However, there is a lack of knowledge and data on bioaccumulation patterns in tissues as well as cellular and molecular responses following the exposure of living organisms to Ni. In this study, Japanese quails were exposed to low (10 µg/L) and high (2000 µg/L) Ni concentrations in the form of nickel(II) chloride via drinking water. Sub-chronic exposure lasted 30 days while nominal concentrations represented average Ni content in drinking water (low dose) and average Ni levels in highly polluted aquatic environments (high dose). It was revealed that a high dose of Ni was correlated with increased water intake and decreased body weight. Overall, Ni exposure induced the development of microcytic anemia and alterations in measured blood indices. Moreover, Ni exposure impaired immunological activation as seen through the increased number of the white blood cells, increased heterophile/lymphocyte (H/L) ratio, and pronounced thrombocytosis. Ni elicited changes in the albumin, glucose, cholesterol, and triglyceride serum levels in a concentration-dependent manner. Alterations of plasma protein fractions suggested liver functional impairment while high levels of urea and creatinine indicated potential kidney injury. Granulation of heterophiles and an increase in erythroblasts in the bone marrow showed that the hematopoietic tissue was also impacted by Ni toxicity. On average each quail bioaccumulated 5.87 µg of Ni per gram of tissue. Moreover, the distribution and bioaccumulation of Ni in terms of relative concentration were as follows: feathers > kidneys > heart > liver > pectoral muscles. Assessed bioaccumulation levels and associated cellular and metabolic alterations have revealed new multilayer toxicological data that will help in the extrapolation of Ni toxicity in other vertebrates, including humans.


Subject(s)
Drinking Water , Metals, Heavy , Water Pollutants, Chemical , Humans , Animals , Nickel/toxicity , Nickel/metabolism , Quail , Bioaccumulation , Water Pollutants, Chemical/toxicity
9.
Cells ; 12(2)2023 01 11.
Article in English | MEDLINE | ID: mdl-36672217

ABSTRACT

Additive manufacturing (AM) or industrial 3D printing uses cutting-edge technologies and materials to produce a variety of complex products. However, the effects of the unintentionally emitted AM (nano)particles (AMPs) on human cells following inhalation, require further investigations. The physicochemical characterization of the AMPs, extracted from the filter of a Laser Powder Bed Fusion (L-PBF) 3D printer of iron-based materials, disclosed their complexity, in terms of size, shape, and chemistry. Cell Painting, a high-content screening (HCS) assay, was used to detect the subtle morphological changes elicited by the AMPs at the single cell resolution. The profiling of the cell morphological phenotypes, disclosed prominent concentration-dependent effects on the cytoskeleton, mitochondria, and the membranous structures of the cell. Furthermore, lipidomics confirmed that the AMPs induced the extensive membrane remodeling in the lung epithelial and macrophage co-culture cell model. To further elucidate the biological mechanisms of action, the targeted metabolomics unveiled several inflammation-related metabolites regulating the cell response to the AMP exposure. Overall, the AMP exposure led to the internalization, oxidative stress, cytoskeleton disruption, mitochondrial activation, membrane remodeling, and metabolic reprogramming of the lung epithelial cells and macrophages. We propose the approach of integrating Cell Painting with metabolomics and lipidomics, as an advanced nanosafety methodology, increasing the ability to capture the cellular and molecular phenotypes and the relevant biological mechanisms to the (nano)particle exposure.


Subject(s)
Lipidomics , Metabolomics , Humans , Lung/metabolism , Epithelial Cells , Phenotype
10.
Front Toxicol ; 4: 836447, 2022.
Article in English | MEDLINE | ID: mdl-35548681

ABSTRACT

Additive manufacturing (AM) or industrial three-dimensional (3D) printing drives a new spectrum of design and production possibilities; pushing the boundaries both in the application by production of sophisticated products as well as the development of next-generation materials. AM technologies apply a diversity of feedstocks, including plastic, metallic, and ceramic particle powders with distinct size, shape, and surface chemistry. In addition, powders are often reused, which may change the particles' physicochemical properties and by that alter their toxic potential. The AM production technology commonly relies on a laser or electron beam to selectively melt or sinter particle powders. Large energy input on feedstock powders generates several byproducts, including varying amounts of virgin microparticles, nanoparticles, spatter, and volatile chemicals that are emitted in the working environment; throughout the production and processing phases. The micro and nanoscale size may enable particles to interact with and to cross biological barriers, which could, in turn, give rise to unexpected adverse outcomes, including inflammation, oxidative stress, activation of signaling pathways, genotoxicity, and carcinogenicity. Another important aspect of AM-associated risks is emission/leakage of mono- and oligomers due to polymer breakdown and high temperature transformation of chemicals from polymeric particles, both during production, use, and in vivo, including in target cells. These chemicals are potential inducers of direct toxicity, genotoxicity, and endocrine disruption. Nevertheless, understanding whether AM particle powders and their byproducts may exert adverse effects in humans is largely lacking and urges comprehensive safety assessment across the entire AM lifecycle-spanning from virgin and reused to airborne particles. Therefore, this review will detail: 1) brief overview of the AM feedstock powders, impact of reuse on particle physicochemical properties, main exposure pathways and protective measures in AM industry, 2) role of particle biological identity and key toxicological endpoints in the particle safety assessment, and 3) next-generation toxicology approaches in nanosafety for safety assessment in AM. Altogether, the proposed testing approach will enable a deeper understanding of existing and emerging particle and chemical safety challenges and provide a strategy for the development of cutting-edge methodologies for hazard identification and risk assessment in the AM industry.

11.
Toxicology ; 467: 153100, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35032623

ABSTRACT

Additive manufacturing (AM) or "3D-printing" is a ground-breaking technology that enables the production of complex 3D parts. Its rapid growth calls for immediate toxicological investigations of possible human exposures in order to estimate occupational health risks. Several laser-based powder bed fusion AM techniques are available of which many use metal powder in the micrometer range as feedstock. Large energy input from the laser on metal powders generates several by-products, like spatter and condensate particles. Due to often altered physicochemical properties and composition, spatter and condensate particles can result in different toxicological responses compared to the original powder particles. The toxicity of such particles has, however, not yet been investigated. The aim of the present study was to investigate the toxicity of condensate/spatter particles formed and collected upon selective laser melting (SLM) printing of metal alloy powders, including a nickel-chromium-based superalloy (IN939), a nickel-based alloy (Hastelloy X, HX), a high-strength maraging steel (18Ni300), a stainless steel (316L), and a titanium alloy (Ti6Al4V). Toxicological endpoints investigated included cytotoxicity, generation of reactive oxygen species (ROS), genotoxicity (comet and micronucleus formation), and inflammatory response (cytokine/chemokine profiling) following exposure of human bronchial epithelial cells (HBEC) or monocytes/macrophages (THP-1). The results showed no or minor cytotoxicity in the doses tested (10-100 µg/mL). Furthermore, no ROS generation or formation of micronucleus was observed in the HBEC cells. However, an increase in DNA strand breaks (detected by comet assay) was noted in cells exposed to HX, IN939, and Ti6Al4V, whereas no evident release of pro-inflammatory cytokine was observed from macrophages. Particle and surface characterization showed agglomeration in solution and different surface oxide compositions compared to the nominal bulk content. The extent of released nickel was small and related to the nickel content of the surface oxides, which was largely different from the bulk content. This may explain the limited toxicity found despite the high Ni bulk content of several powders. Taken together, this study suggests relatively low acute toxicity of condensates/spatter particles formed during SLM-printing using IN939, HX, 18Ni300, 316L, and Ti6Al4V as original metal powders.


Subject(s)
Alloys/toxicity , Epithelial Cells/drug effects , Lung/drug effects , Macrophages/drug effects , Pneumonia/chemically induced , Printing, Three-Dimensional , Chromium Alloys/toxicity , Cytokines/genetics , Cytokines/metabolism , DNA Damage , Dose-Response Relationship, Drug , Epithelial Cells/metabolism , Epithelial Cells/pathology , Humans , Inflammation Mediators/metabolism , Lung/metabolism , Lung/pathology , Macrophages/metabolism , Macrophages/pathology , Mutagenicity Tests , Oxidative Stress/drug effects , Pneumonia/genetics , Pneumonia/metabolism , Pneumonia/pathology , Powders , Reactive Oxygen Species/metabolism , Risk Assessment , Stainless Steel/toxicity , THP-1 Cells , Titanium/toxicity
12.
Nanomaterials (Basel) ; 11(10)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34685085

ABSTRACT

We investigated the role of the gold nanoparticles functionalized with polyvinylpyrrolidone (PVP-AuNPs) on the innate immune response against an acute infection caused by Vibrio anguillarum in an in vitro immunological nonmammalian next-generation model, the sea urchin Paracentrotus lividus. To profile the immunomodulatory function of PVP-AuNPs (0.1 µg mL-1) in sea urchin immune cells stimulated by Vibrio (10 µg mL-1) for 3 h, we focused on the baseline immunological state of the donor, and we analysed the topography, cellular metabolism, and expression of human cell surface antigens of the exposed cells, as well as the signalling leading the interaction between PVP-AuNPs and the Vibrio-stimulated cells. PVP-AuNPs are not able to silence the inflammatory signalling (TLR4/p38MAPK/NF-κB signalling) that involves the whole population of P. lividus immune cells exposed to Vibrio. However, our findings emphasise the ability of PVP-AuNPs to stimulate a subset of rare cells (defined here as Group 3) that express CD45 and CD14 antigens on their surface, which are known to be involved in immune cell maturation and macrophage activation in humans. Our evidence on how PVP-AuNPs may stimulate sea urchin immune cells represents an important starting point for planning new research work on the topic.

13.
Nanomaterials (Basel) ; 11(6)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207693

ABSTRACT

Many components of the innate immune system are evolutionarily conserved and shared across many living organisms, from plants and invertebrates to humans. Therefore, these shared features can allow the comparative study of potentially dangerous substances, such as engineered nanoparticles (NPs). However, differences of methodology and procedure between diverse species and models make comparison of innate immune responses to NPs between organisms difficult in many cases. To this aim, this review provides an overview of suitable methods and assays that can be used to measure NP immune interactions across species in a multidisciplinary approach. The first part of this review describes the main innate immune defense characteristics of the selected models that can be associated to NPs exposure. In the second part, the different modes of exposure to NPs across models (considering isolated cells or whole organisms) and the main endpoints measured are discussed. In this synergistic perspective, we provide an overview of the current state of important cross-disciplinary immunological models to study NP-immune interactions and identify future research needs. As such, this paper could be used as a methodological reference point for future nano-immunosafety studies.

14.
Chemosphere ; 266: 129005, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33279236

ABSTRACT

Hexavalent chromium (Cr(VI)) is an environmental pollutant with vast mutagenic and carcinogenic potential. Various past and recent studies confirm the deleterious effects of Cr(VI) in different models, from invertebrates to mammalians. However, there is a lack of studies that comprehensively assess and correlate Cr(VI) accumulation patterns and the resulting physiological responses. Here we used an attractive toxicological model, male Japanese quail (Coturnix japonica), as an alternative probing system to evaluate Cr(VI) accumulation in the vital organs, including the brain, heart, kidneys, liver, and testes after 20 days of exposure to 1.2 µg/mL and 2.4 µg/mL potassium dichromate-K2Cr2O7 ingested in the form of drinking water. The observed effects were correlated with the shift in immune system readiness, hematological indices, serum biochemistry and enzyme activity. Regardless of the exposure dose, the Cr(VI) distribution and accumulation pattern in terms of relative Cr(VI) concentration in tissues was: testes > kidneys > liver > heart > brain. Moreover, Cr(VI) triggered the development of microcytic and hypochromic anemia and reduced the immune system's readiness to cope with challenges. Besides, serum biochemistry presented significant shifts, including reduction of serum electrolytes and proteins and an increase in creatine kinase (CK) and lactate dehydrogenase (LDH) activity. Our study provides novel toxicological data that can be translated to higher animal models to help in the extrapolation of Cr(VI) toxicity in humans.


Subject(s)
Coturnix , Quail , Animals , Chromium/toxicity , Humans , Male , Potassium Dichromate
15.
J Hazard Mater ; 402: 123793, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33254802

ABSTRACT

We report that the immunogenicity of colloidal gold nanoparticles coated with polyvinylpyrrolidone (PVP-AuNPs) in a model organism, the sea urchin Paracentrotus lividus, can function as a proxy for humans for in vitro immunological studies. To profile the immune recognition and interaction from exposure to PVP-AuNPs (1 and 10 µg mL-1), we applied an extensive nano-scale approach, including particle physicochemical characterisation involving immunology, cellular biology, and metabolomics. The interaction between PVP-AuNPs and soluble proteins of the sea urchin physiological coelomic fluid (blood equivalent) results in the formation of a protein "corona" surrounding the NPs from three major proteins that influence the hydrodynamic size and colloidal stability of the particle. At the lower concentration of PVP-AuNPs, the P. lividus phagocytes show a broad metabolic plasticity based on the biosynthesis of metabolites mediating inflammation and phagocytosis. At the higher concentration of PVP-AuNPs, phagocytes activate an immunological response involving Toll-like receptor 4 (TLR4) signalling pathway at 24 hours of exposure. These results emphasise that exposure to PVP-AuNPs drives inflammatory signalling by the phagocytes and the resolution at both the low and high concentrations of the PVP-AuNPs and provides more details regarding the immunogenicity of these NPs.


Subject(s)
Metal Nanoparticles , Paracentrotus , Animals , Gold , Humans , Metal Nanoparticles/toxicity , Phagocytes , Povidone
16.
Biol Trace Elem Res ; 199(4): 1574-1583, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32602051

ABSTRACT

Lead toxicity has been a hallmark issue of toxicology over the last decades. However, predictive and non-robust models did not provide complete data on low-dose lead interaction with the organism at different functional levels (e.g., blood-serum-liver-bone marrow-bursa fabricii-reproductive system axis). Japanese quails are an animal model with a strong immune system, making them suitable for the thorough assessment of in vivo chronic lead toxicity. In this study, we have exposed Japanese quails via water ingestion to 0.25 and 0.5 µg/mL lead(II) chloride (PbCl2) for 20 days and assessed blood cells, serum biomarkers, hepatocyte survival, bone marrow hematopoiesis, bursa fabricii, and lead accumulation in eggs. Blood cells passed through morphological alterations (loss and inversion of the erythrocyte nucleus, multiple erythrocyte and thrombocyte aggregation, lymphocyte degradation, and blast cell infiltration). In the serum, PbCl2 increased the activity of creatine kinase (CK) and lactate dehydrogenase (LDH); increased the level of cholesterol, sodium, creatinine, and urea; and reduced the level of proteins, triglycerides, chloride, potassium, calcium, and alkaline phosphatase (ALP) activity (P < 0.05). Liver tissue of the exposed animals exhibited apparent death of hepatocytes. In the bone marrow, macrophages and heterophils contained a vast number of the infiltrated/uptaken granules upon PbCl2 exposure. Ultimately, PbCl2 exposure elicited a series of events observed first in the blood and serum parameters and later translated to the hematopoietic centers.


Subject(s)
Coturnix , Lead , Animals , Biomarkers , Bone Marrow , Hematopoiesis , Hepatocytes , Lead/toxicity
17.
Nanomaterials (Basel) ; 10(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114014

ABSTRACT

Sunscreens are emulsions of water and oil that contain filters capable of protecting against the detrimental effects of ultraviolet radiation (UV). The widespread use of cosmetic products based on nanoparticulate UV filters has increased concerns regarding their safety and compatibility with both the environment and human health. In the present work, we evaluated the effects of titanium dioxide nanoparticle (TiO2 NP)-based UV filters with three different surface coatings on the development and immunity of the sea urchin, Paracentrotus lividus. A wide range of NP concentrations was analyzed, corresponding to different levels of dilution starting from the original cosmetic dispersion. Variations in surface coating, concentration, particle shape, and pre-dispersant medium (i.e., water or oil) influenced the embryonic development without producing a relevant developmental impairment. The most common embryonic abnormalities were related to the skeletal growth and the presence of a few cells, which were presumably involved in the particle uptake. Adult P. lividus immune cells exposed to silica-coated TiO2 NP-based filters showed a broad metabolic plasticity based on the biosynthesis of metabolites that mediate inflammation, phagocytosis, and antioxidant response. The results presented here highlight the biosafety of the TiO2 NP-based UV filters toward sea urchin, and the importance of developing safer-by-design sunscreens.

18.
Small ; 16(21): e2000598, 2020 05.
Article in English | MEDLINE | ID: mdl-32363795

ABSTRACT

The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified.


Subject(s)
Immunity, Innate , Nanostructures , Risk Assessment , Adaptive Immunity , Animals , Immunity, Innate/drug effects , Nanostructures/toxicity , Risk Assessment/methods
19.
J Hazard Mater ; 384: 121389, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31639584

ABSTRACT

Titanium dioxide nanoparticles (TiO2NPs) are revolutionizing biomedicine due to their potential application as diagnostic and therapeutic agents. However, the TiO2NP immune-compatibility remains an open issue, even for ethical reasons. In this work, we investigated the immunomodulatory effects of TiO2NPs in an emergent proxy to human non-mammalian model for in vitro basic and translational immunology: the sea urchin Paracentrotus lividus. To highlight on the new insights into the evolutionarily conserved intracellular signaling and metabolism pathways involved in immune-TiO2NP recognition/interaction we applied a wide-ranging approach, including electron microscopy, biochemistry, transcriptomics and metabolomics. Findings highlight that TiO2NPs interact with immune cells suppressing the expression of genes encoding for proteins involved in immune response and apoptosis (e.g. NF-κB, FGFR2, JUN, MAPK14, FAS, VEGFR, Casp8), and boosting the immune cell antioxidant metabolic activity (e.g. pentose phosphate, cysteine-methionine, glycine-serine metabolism pathways). TiO2NP uptake was circumscribed to phagosomes/phagolysosomes, depicting harmless vesicular internalization. Our findings underlined that under TiO2NP-exposure sea urchin innate immune system is able to control inflammatory signaling, excite antioxidant metabolic activity and acquire immunological tolerance, providing a new level of understanding of the TiO2NP immune-compatibility that could be useful for the development in Nano medicines.


Subject(s)
Antioxidants/metabolism , Immunity, Innate/drug effects , Nanoparticles/toxicity , Paracentrotus/drug effects , Titanium/toxicity , Transcription, Genetic/drug effects , Water Pollutants, Chemical/toxicity , Animals , Cell Survival/drug effects , Cell Survival/immunology , Cells, Cultured , Immunity, Innate/genetics , Paracentrotus/cytology , Paracentrotus/immunology , Paracentrotus/metabolism , Phagocytosis/drug effects
20.
Front Immunol ; 10: 2261, 2019.
Article in English | MEDLINE | ID: mdl-31616433

ABSTRACT

Extensive exploitation of titanium dioxide nanoparticles (TiO2NPs) augments rapid release into the marine environment. When in contact with the body fluids of marine invertebrates, TiO2NPs undergo a transformation and adhere various organic molecules that shape a complex protein corona prior to contacting cells and tissues. To elucidate the potential extracellular signals that may be involved in the particle recognition by immune cells of the sea urchin Paracentrotus lividus, we investigated the behavior of TiO2NPs in contact with extracellular proteins in vitro. Our findings indicate that TiO2NPs are able to interact with sea urchin proteins in both cell-free and cell-conditioned media. The two-dimensional proteome analysis of the protein corona bound to TiO2NP revealed that negatively charged proteins bound preferentially to the particles. The main constituents shaping the sea urchin cell-conditioned TiO2NP protein corona were proteins involved in cellular adhesion (Pl-toposome, Pl-galectin-8, Pl-nectin) and cytoskeletal organization (actin and tubulin). Immune cells (phagocytes) aggregated TiO2NPs on the outer cell surface and within well-organized vesicles without eliciting harmful effects on the biological activities of the cells. Cells showed an active metabolism, no oxidative stress or caspase activation. These results provide a new level of understanding of the extracellular proteins involved in the immune-TiO2NP recognition and interaction in vitro, confirming that primary immune cell cultures from P. lividus can be an optional model for swift and efficient immune-toxicological investigations.


Subject(s)
Nanoparticles/administration & dosage , Protein Corona/immunology , Sea Urchins/immunology , Titanium/immunology , Animals , Cell Adhesion/immunology , Galectins/immunology , Glycoproteins/immunology , Nectins/immunology , Paracentrotus/immunology , Phagocytes/immunology , Proteome/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...