Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(7): e28676, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38617951

ABSTRACT

Non-viral gene delivery is a new therapeutic in the treating genetic disorders. The most important challenge in nonviral gene transformation is the immunogenicity of carriers. Nowadays, The immunogenicity of nanocarriers as a deliverer of nucleic acid molecules has received significant attention. In this research, hematite green nanocarriers were prepared in one step with rosemary extract. Synthetic nanocarriers were investigated by using XRD (X-ray diffraction analysis), FESEM-EDX (field emission scanning electron microscopy with energy dispersive X-Ray spectroscopy), HR-TEM (high-resolution transmission electron microscopy), VSM (value stream mapping), TGA- DTG (thermal gravimetric analysis-differential thermal analysis), FT-IR (fourier-transform infrared spectroscopy), BET (brunauer-emmett-teller) and BJH (barrett-joyner-halenda) analyses. The cytotoxicity of synthetic nanocarriers was evaluated on HEK-293Tcell lines at concentration of 1-500 µg/ml using MTT method. Finally, targeted transfection of GFP plasmid using green porous particles was performed using an external magnetic field. Biogenic hematite nanoparticles with hexagonal crystal structures have a 3D pile flower-like morphology. The existence of rosemary phytochemicals in the construction of nanoparticles has caused minimal toxicity and high biocompatibility of nanocarriers. Also, TGA studies confirmed the stability of bionic nanoparticles. Superparamagnetic green nanocarriers at concentrations above 500 µg/ml is not toxic to HEK293T cells. The delivery efficiency of the plasmid was optimal at an N/P ratio of 3. Therefore, the porous α-Fe2O3 green nanocarriers are non-viral and safe carriers with potential applications in gene therapy.

2.
J Biol Eng ; 17(1): 61, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37784189

ABSTRACT

Multicomponent nanoparticle systems are known for their varied properties and functions, and have shown potential as gene nanocarriers. This study aims to synthesize and characterize ternary nickel-cobalt-ferrite (NiCoFe2O4) nanoparticles with the potential to serve as gene nanocarriers for cancer/gene therapy. The biogenic nanocarriers were prepared using a simple and eco-friendly method following green chemistry principles. The physicochemical properties of the nanoparticles were analyzed by X-ray diffraction, vibrating sample magnetometer, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller. To evaluate the morphology of the nanoparticles, the field emission scanning electron microscopy with energy dispersive X-Ray spectroscopy, high-resolution transmission electron microscopy imaging, and electron tomography were conducted. Results indicate the nanoparticles have a nanoflower morphology with a mesoporous nature and a cubic spinel structure, where the rod and spherical nanoparticles became rose-like with a specific orientation. These nanoparticles were found to have minimal toxicity in human embryonic kidney 293 (HEK-293 T) cells at concentrations of 1 to 250 µg·mL-1. We also demonstrated that the nanoparticles could be used as gene nanocarriers for delivering genes to HEK-293 T cells using an external magnetic field, with optimal transfection efficiency achieved at an N/P ratio of 2.5. The study suggests that biogenic multicomponent nanocarriers show potential for safe and efficient gene delivery in cancer/gene therapy.

3.
Bioprocess Biosyst Eng ; 45(1): 97-105, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34581868

ABSTRACT

In this study, potassium-doped zinc oxide nanoparticles (K-doped ZnO NPs) were green-synthesized using pine pollen extracts based on bioethics principles. The synthesized NPs were analyzed using X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDXA), and transmission electron microscopy (TEM). The cytotoxicity of these nanoparticles (NPs) on normal macrophage cells and cancer cell lines was evaluated. In the same concentrations of K-doped ZnO and pure ZnO NPs, K-doped ZnO NPs demonstrated higher toxicity. The results confirmed that the doped potassium could increase cytotoxicity. The IC50 of K-doped ZnO NPs, pure ZnO NPs, and the examined control drug were 497 ± 15, 769 ± 12, and 606 ± 19 µg/mL, respectively. Considering the obtained IC50 of K-doped ZnO NPs, they were more toxic to the cancer cell lines and had less cytotoxicity on normal macrophage cells.


Subject(s)
Nanostructures/chemistry , Plants/chemistry , Potassium/chemistry , Zinc Oxide/chemistry
4.
Sci Rep ; 11(1): 23479, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873281

ABSTRACT

In this study, a simple and green strategy was reported to prepare bimetallic nanoparticles (NPs) by the combination of zinc oxide (ZnO) and copper oxide (CuO) using Sambucus nigra L. extract. The physicochemical properties of these NPs such as crystal structure, size, and morphology were studied by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), and transmission electron microscopy (TEM). The results suggested that these NPs contained polygonal ZnO NPs with hexagonal phase and spherical CuO NPs with monoclinic phase. The anticancer activity of the prepared bimetallic NPs was evaluated against lung and human melanoma cell lines based on MTT assay. As a result, the bimetallic ZnO/CuO NPs exhibited high toxicity on melanoma cancer cells while their toxicity on lung cancer cells was low.


Subject(s)
Copper/chemistry , Copper/pharmacology , Cytotoxins/pharmacology , Metal Nanoparticles/chemistry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , A549 Cells , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Line, Tumor , Cytotoxins/chemistry , Green Chemistry Technology/methods , Humans , Microbial Sensitivity Tests/methods , Microscopy, Electron, Transmission/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Sambucus nigra/chemistry , Spectroscopy, Fourier Transform Infrared/methods , X-Ray Diffraction/methods
5.
Sci Rep ; 11(1): 17431, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34465814

ABSTRACT

Greener methods for the synthesis of various nanostructures with well-organized characteristics and biomedical applicability have demonstrated several advantages, including simplicity, low toxicity, cost-effectiveness, and eco-friendliness. Spinel nickel ferrite (NiFe2O4) nanowhiskers with rod-like structures were synthesized using a simple and green method; these nanostructures were evaluated by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, and X-ray energy diffraction spectroscopy. Additionally, the prepared nanowhiskers could significantly reduce the survival of Leishmania major promastigotes, at a concentration of 500 µg/mL; the survival of promastigotes was reduced to ≃ 26%. According to the results obtained from MTT test (in vitro), it can be proposed that further studies should be conducted to evaluate anti-leishmaniasis activity of these types of nanowhiskers in animal models.

6.
Bioprocess Biosyst Eng ; 44(9): 1957-1964, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33934243

ABSTRACT

The aim of this study was cost-effective and greener synthesis of barium carbonate (BaCO3 or witherite) nanoparticles with economic importance, and to evaluate their therapeutic potentials and biocompatibility with immune cells. Barium carbonate nanoparticles were biosynthesized using black elderberry extract in one step with non-toxic precursors and simple laboratory conditions; their morphologies and specific structures were analyzed using field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX). The therapeutic capabilities of these nanoparticles on the immune cells of murine macrophages J774 and promastigotes Leishmania tropica were evaluated. BaCO3 nanoparticles with IC50 = 46.6 µg/mL were more effective than negative control and glucantium (positive control) in reducing promastigotes (P < 0.01). Additionally, these nanoparticles with a high value of cytotoxicity concentration 50% (CC50) were less toxic to macrophage cells than glucantime; however, they were significantly different at high concentrations compared to the negative control.


Subject(s)
Antiprotozoal Agents , Barium , Carbonates , Leishmania tropica/growth & development , Macrophages , Materials Testing , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Barium/chemistry , Barium/pharmacology , Carbonates/chemistry , Carbonates/pharmacology , Cell Line , Macrophages/metabolism , Macrophages/parasitology , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Plant Extracts/chemistry , Sambucus/chemistry
7.
Bioprocess Biosyst Eng ; 44(7): 1423-1432, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33709297

ABSTRACT

Cobalt oxide nanoparticles were prepared via green chemistry route and fully characterized by Field Emission Scanning Electron Microscope (FESEM), Energy-dispersive X-ray spectroscopy (EDAX), X-ray diffraction (XRD), High-resolution transmission electron microscopy (HRTEM) and Transmission electron microscopy (TEM) analyses; the CoO and Co3O4 nanoparticles, in sheet-shaped cobalt oxide form, ensued simultaneously in one step. The varying concentrations of NPs were analyzed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test on the cancer cell line (U87) which revealed that with increasing concentration of cobalt oxide nanoparticles, the survival rate of U87 tumor cells decreases; IC50 of nanoparticles being ~ 55 µg/ml-1.


Subject(s)
Cobalt/chemistry , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Nanotechnology/methods , Oxides/chemistry , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , Inhibitory Concentration 50 , Magnetics , Microbial Sensitivity Tests , Microscopy, Electron, Transmission , Nanomedicine/methods , Plant Extracts , Rosmarinus , Solubility , Spectroscopy, Fourier Transform Infrared , Surface-Active Agents , Temperature , Tetrazolium Salts/chemistry , Thiazoles/chemistry , X-Ray Diffraction
8.
RSC Adv ; 10(62): 38063-38068, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-35548370

ABSTRACT

The synthesis of inorganic rod shape nanostructures is important in chromatography, dentistry, and medical applications such as bone implants, and drug and gene delivery systems. Herein, calcium carbonate (CaCO3) nanowires were synthesized using a plant extract and the ensuing nanoparticles were characterized by XRD, FESEM, and HR-TEM. Then, the leishmanicidal effects of biogenic calcium carbonate nanowires were investigated against Leishmania major including the toxicity of varying concentrations of nanoparticles, and the percentage of viable and apoptotic cells based on flow cytometry analysis. Based on the results, the IC50 of these polymorphs were calculated to be 800 µg mL-1. An ecofriendly, inexpensive, and novel biogenic method for the production of a new advanced inorganic nanostructure, CaCO3 nanowires, is described without using hazardous chemicals; calcium carbonate nanowires maybe used as a smart drug carrier.

9.
Artif Cells Nanomed Biotechnol ; 48(1): 242-251, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31851843

ABSTRACT

Nickel-ferrite (NiFe2O4) nanorods particles (NRP) was biosynthesised for the first time by the Rosemary Extract. The NRP was fully characterised, including the type, nanostructure and physicochemical properties of using XRD, HRTEM, FeSEM, XPS, FTIR and VSM. TEM confirmed rod-shaped nano-sized particles with average sizes ranging from 10 nm to 28 nm. The EDAX Analysis showed the presence of iron, nickel, oxygen, and carbon. XRD analysis confirmed the synthesis of NiFe2O4 crystals. XPS curves showed photoelectron for iron, oxygen and nickel. EDS showed the atomic, weight percentages ratios of Ni(12%): Fe(24%) and: O(48) are close to the theoretical value (Ni: Fe:O = 1:2:4), of bimetallic magnetic NiFe2O4 NRP. NiFe2O4 NRP had cytotoxicity effect on MCF-7 cells survival which suggests that NiFe2O4 NRP can be used as a new class of anticancer agent in design novel cancer therapy research.


Subject(s)
Ferric Compounds/chemistry , Nanoparticles/chemistry , Nanotechnology , Nanotubes/chemistry , Nickel/chemistry , Rosmarinus/chemistry , Chemistry Techniques, Synthetic , Green Chemistry Technology , Plant Extracts/metabolism
10.
IET Nanobiotechnol ; 12(7): 879-887, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30247125

ABSTRACT

Recently, researchers succeeded in designing and manufacturing a new class of nanoparticles (NPs) called hybrid NPs. Among hybrid NPs, bimetallic and core-shell NPs were a revolutionary step in NPs science. A large number of green physiochemical and methods for nanostructures synthesis have been published. Eventually, physiochemical methods are either expensive or require the use of chemical compounds for the synthesis of bimetallic and core-shell nanostructures. The main challenges that scientists are facing are making the process cheaper, facile and eco-friendly efficient synthesis process. Green synthesis (biosynthesis) refers to the use of bio-resources (such as bacteria, fungi, plants or their derivatives) for the synthesis of nanostructures. The popularity of the green synthesis of nanostructures is due to their environmental friendliness and no usage of toxic materials, environmental friendliness for the synthesis or stability of nanostructure. Bimetallic and core-shell NPs have many biomedical applications such as removing heavy metals, parasitology, molecular and microbial sensor, gene carrier, single bacterial detection, oligonucleotide detection and so on. The purpose of this study is to discuss briefly the biosynthesised bimetallic and core-shell NPs, their biomedical applications.


Subject(s)
Metal Nanoparticles , Nanomedicine , Animals , Humans , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...