Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 10028, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29968779

ABSTRACT

Nanostructured SnO2 is a promising material for the scalable production of portable gas sensors. To fully exploit their potential, these gas sensors need a faster recovery rate and higher sensitivity at room temperature than the current state of the art. Here we demonstrate a chemiresistive gas sensor based on vertical SnOx nanopillars, capable of sensing < 5 ppm of H2 at room temperature and 10 ppt at 230 °C. We test the sample both in vacuum and in air and observe an exceptional improvement in the performance compared to commercially available gas sensors. In particular, the recovery time for sensing NH3 at room temperature is more than one order of magnitude faster than a commercial SnO2 sensor. The sensor shows an unique combination of high sensitivity and fast recovery time, matching the requirements on materials expected to foster widespread use of portable and affordable gas sensors.

2.
Phys Chem Chem Phys ; 12(26): 7184-93, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20485783

ABSTRACT

Searching for new pi-conjugated charge-transfer systems, the electronic structure of a new acceptor-donor pair derived from coronene (C(24)H(12)) was investigated by ultraviolet photoelectron spectroscopy (UPS). The acceptor coronene-hexaone (C(24)H(6)O(6), in the following abbreviated as COHON) and the donor hexamethoxycoronene (C(30)H(24)O(6), abbreviated as HMC) were adsorbed as pure and mixed phases on gold substrates. At low coverage, COHON adsorption leads to the appearance of a charge-transfer induced interface state 1.75 eV below the Fermi energy. At multilayer coverage the photoemission intensity of the interface state drops and the valence spectrum of neutral COHON appears. The sample work function decreases from 5.3 eV (clean Au) to 4.8 eV (monolayer) followed by an increase to 5.6 eV (multilayer). The formation of a significant interface dipole due to charge-transfer at the metal-organic interface is possibly accompanied by a change in molecular orientation. HMC on Au exhibits no interface state and the sample work function decreases monotonically to ca. 4.8 eV (multilayer). The UPS spectra of individual donor and acceptor multilayers show good agreement with density functional theory modeling. In donor/acceptor mixed films the photoemission signal of the donor (acceptor) shifts to higher (lower) binding energy. This trend is predicted by the calculation and is anticipated when charge is transferred from donor to acceptor. We propose that mixed films of COHON and HMC constitute a weak charge-transfer system.

SELECTION OF CITATIONS
SEARCH DETAIL
...