Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 166: 109363, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32877863

ABSTRACT

The E_LIBANS project (INFN) aims at producing neutron facilities for interdisciplinary irradiation purposes among which pre-clinical research for BNCT. After the successful setting-up of the thermal neutron source based on a medical LINAC, a similar apparatus for epithermal neutrons has been developed. Both structures are based on an Elekta 18 MV coupled with a photoconverter-moderator system which deploys the (γ,n) reaction to convert the X-rays into neutrons. This communication describes the two neutron sources and the results obtained in their characterization.


Subject(s)
Boron Neutron Capture Therapy/instrumentation , Neutrons , Particle Accelerators/instrumentation , Animals , Boron Neutron Capture Therapy/statistics & numerical data , Computer Simulation , Equipment Design , Humans , Italy
2.
Radiat Prot Dosimetry ; 180(1-4): 267-272, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29361109

ABSTRACT

Conventional linear accelerators (LINACs) for radiotherapy produce fast secondary neutrons due to photonuclear processes. The neutron presence is considered as an extra undesired dose during the radiotherapy treatment, which could cause secondary radio-induced tumors and malfunctions to cardiological implantable devices. It is thus important to measure the neutron dose contribution to patients during radiotherapy, not only at high-energy LINACs, but also at lower energies, near the giant dipole resonance reaction threshold. In this work, the full body neutron dose equivalent has been measured during single-field radiotherapy sessions carried out at different LINAC energies (15, 10 and 6 MV) by using a tissue equivalent (for neutrons) anthropomorphic phantom together with bubble dosemeters. Results have shown that some neutron photoproduction is still present also at lower energies. As a consequence, emitted photoneutrons cannot be ignored and represent a risk contribution for patients undergoing radiotherapy.


Subject(s)
Neutrons , Particle Accelerators/instrumentation , Radiometry/instrumentation , Anthropometry , Calibration , Equipment Design , Humans , Monte Carlo Method , Phantoms, Imaging , Photons , Radiotherapy , Radiotherapy Dosage , Reproducibility of Results , Risk
3.
Radiat Prot Dosimetry ; 180(1-4): 304-308, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29361156

ABSTRACT

Radiation-resistant, gamma-insensitive, active thermal neutron detectors were developed to monitor the thermal neutron cavity of the E_LIBANS project. Silicon and silicon carbide semiconductors, plus vented air ion chambers, were chosen for this purpose. This communication describes the performance of these detectors, owing on the results of dedicated measurement campaigns.


Subject(s)
Carbon Compounds, Inorganic/chemistry , Neutrons , Radiation Monitoring/instrumentation , Radiation Monitoring/methods , Radiation Protection/instrumentation , Semiconductors/standards , Silicon Compounds/chemistry , Silicon/chemistry , Computer Simulation , Equipment Design , Radiation Dosage , Temperature
4.
Radiat Prot Dosimetry ; 180(1-4): 273-277, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29309701

ABSTRACT

The e_LiBANS project aims at producing intense thermal neutron fields for diverse interdisciplinary irradiation purposes. It makes use of a reconditioned medical electron LINAC, recently installed at the Physics Department and INFN in Torino, coupled to a dedicated photo-converter, developed within this collaboration, that uses (γ,n) reaction within high Z targets. Produced neutrons are then moderated to thermal energies and concentrated in an irradiation volume. To measure and to characterize in real time the intense field inside the cavity new thermal neutron detectors were designed with high radiation resistance, low noise and very high neutron-to-photon discrimination capability. This article offers an overview of the e_LiBANS project and describes the results of the benchmark experiment.


Subject(s)
Neutrons , Particle Accelerators , Photons , Radiation Dosage , Radiometry/instrumentation , Electrons , Equipment Design , Gamma Rays , Interdisciplinary Research , Linear Models
5.
Appl Radiat Isot ; 106: 63-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26315098

ABSTRACT

The paper is focused on the study of a novel photo-neutron source for BNCT preclinical research based on medical electron Linacs. Previous studies by the authors already demonstrated the possibility to obtain a mixed thermal and epithermal neutron flux of the order of 10(7) cm(-2) s(-1). This paper investigates possible Linac's modifications and a new photo-converter design to rise the neutron flux above 5 10(7) cm(-2) s(-1), also reducing the gamma contamination.


Subject(s)
Boron Neutron Capture Therapy , Neutrons , Monte Carlo Method
SELECTION OF CITATIONS
SEARCH DETAIL
...