Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
BMC Oral Health ; 24(1): 752, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943115

ABSTRACT

BACKGROUND: Tissue conditioners are used for treating and improving the tissues supporting complete dentures. On the other hand, recent advances in nanotechnology have revolutionized various fields of science, including dentistry. The present study aimed to investigate novel antimicrobial applications of copper oxide nanoparticle-based tissue conditioner used in complete prostheses. METHODS: The present experimental study included 126 tissue conditioner samples with different concentrations of copper oxide nanoparticles (20%, 10%, 5%, 2.5%, 1.25%, 0.625%, and 0% w/w). The samples were incubated with Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans in 24-well plates for 24 h. Then, samples from the wells were re-incubated for 24 h, and the microorganisms were counted. RESULTS: The culture media containing E. faecalis and P. aeruginosa showed significantly different growth between different nanoparticle concentrations following 24 h (P < 0.001), showing a reduction in bacterial growth with increased nanoparticle concentration. Both bacteria did not show any growth at the 20% concentration. However, C. albicans showed significant differences in growth between different nanoparticle concentrations following 48 h (P < 0.001), showing a reduction in growth with increased nanoparticle concentration. Also, the least growth was observed at the 20% concentration. CONCLUSIONS: In conclusion, the CuO nanoparticles were prepared using a green synthesis methon in the suitable sizes. Moreover, the tissue conditioners containing CuO nanoparticles showed acceptable antimicrobial properties against E. faecalis, P. aeruginosa, and C. albicans.


Subject(s)
Anti-Infective Agents , Candida albicans , Copper , Enterococcus faecalis , Pseudomonas aeruginosa , Copper/pharmacology , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development , Candida albicans/drug effects , Pseudomonas aeruginosa/drug effects , Anti-Infective Agents/pharmacology , Denture, Complete/microbiology , Nanoparticles , Humans , Metal Nanoparticles
2.
J Mol Model ; 30(7): 220, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902588

ABSTRACT

CONTEXT: The s-block metals dissolved in ammonia form metal-ammonia complexes with diffuse electrons which could be used for redox catalysis. In this theoretical paper, we investigated the possibility of the d-bloc transition metals (Mn, Fe, Co, Ni, and Cu) solvated by ammonia. It has been demonstrated that both Mn and Fe atoms undergo into an oxidative reaction with NH3 forming an inserted species, HMNH2. On the contrary, the Co, Ni, and Cu atoms can accommodate four NH3, via the coordination bond, to form the first solvation sphere within C2v, D2d, and Td point groups, respectively. Addition of a fifth NH3 constitute the second solvation shell by forming hydrogen bond with the other NH3s. Interestingly, M(NH3)4 (M = Co, Ni, and Cu) is a so-called solvated electron precursor and should be considered as a monocation M(NH3)4+ kernel in tight contact with one electron distributed over its periphery. This nearly free electron could be used to capture a CO2 molecule and engages in a reduction reaction. METHODS: Geometry optimization of the stationary points on the potential energy surface was performed using density functional theory - CAM-B3LYP functional including the GD3BJ dispersion contribution - in combination with the 6-311 + + G(2d, 2p) basis set for all the atoms. All first-principles calculations were performed using the Gaussian 09 quantum chemical packages. The natural electron configuration of transition atom engaged in the compounds has been found using the natural bond orbital (NBO) method. We used the EDR (electron delocalization range) approach to analyze the structure of solvated electrons in real space. We also used the electron localization function (ELF) to measure the degree of electronic localization within a chemical compound. The EDR and ELF analyses are done using the TopMod and Multiwfn packages, respectively.

3.
Clin Exp Dent Res ; 10(3): e887, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798089

ABSTRACT

OBJECTIVE: This study aimed to evaluate the impact of silver nanoparticles (AgNPs) synthesized from propolis on the formation of Porphyromonas gingivalis biofilms. MATERIAL AND METHODS: AgNPs were synthesized from propolis, and their inhibitory effect on P. gingivalis biofilm formation was assessed. Different concentrations of AgNPs (0.1%, 0.3%, and 0.5%) were tested to determine the dose-dependent antibacterial activity. RESULTS: The results of this study indicated that AgNPs exhibited an inhibitory effect on P. gingivalis biofilm formation. The antibacterial activity of AgNPs was dose-dependent, with concentrations of 0.1%, 0.3%, and 0.5% showing effectiveness. Notably, the concentration of 0.5% demonstrated the most significant anti-biofilm formation activity. CONCLUSION: The results of this study suggest that AgNPs synthesized from propolis have potential as an effective option for enhancing periodontal treatment outcomes. The inhibitory effect of AgNPs on P. gingivalis biofilm formation highlights their potential as alternative antimicrobial agents in the management of periodontal diseases.


Subject(s)
Anti-Bacterial Agents , Biofilms , Metal Nanoparticles , Porphyromonas gingivalis , Silver , Porphyromonas gingivalis/drug effects , Biofilms/drug effects , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Green Chemistry Technology , Propolis/pharmacology , Propolis/chemistry , Microbial Sensitivity Tests , Dose-Response Relationship, Drug , Humans
4.
Protein Expr Purif ; 220: 106489, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38685535

ABSTRACT

Phytate (inositol hexaphosphate) is the major storage form of phosphorus (P) in nature, and phytases catalyze the hydrolysis of P from phytate and the formation of inositol phosphate isomers. In this study, a bacterium that produces phytase was isolated in a phytase screening medium. The bacterium was identified as Klebsiella sp. using phenotypic and molecular techniques. The PhyK phytase gene was successfully amplified from the genome, inserted into the pET-21a (+) vector, and expressed as a recombinant protein in E. Coli BL21. The efficiency of a laboratory phytase (Lab-Ph, PhyK phytase) was determined and compared with a commercial phytase (Com-Ph, Quantum Blue 40P phytase, AB Vista) under an in vitro digestion assay. The native signal peptide effectively facilitated the translocation of the protein to the periplasmic space of E. Coli BL21, resulting in the proper folding of the protein and the manifestation of desirable enzyme activity. The Lab-Ph displayed the temperature and pH optima at 50 °C and 5 respectively. In addition, the Lab-Ph was inactivated at 80 °C. Under an in vitro digestion assay condition, Lab-Ph improved the P solubility coefficient in broiler diets. In comparison, the Com-Ph significantly increased the P solubility coefficient even when compared with the Lab-Ph. In summary, this study has shown that Lab-Ph possesses the necessary biochemical properties to be used in various industrial applications. However, Lab-Ph is extremely sensitive to heat treatment. The Lab-Ph and Com-Ph under an in vitro digestion assay improved the solubility coefficient of P in the broiler diet.


Subject(s)
6-Phytase , Chickens , Escherichia coli , Klebsiella , Recombinant Proteins , Solubility , Animals , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , 6-Phytase/genetics , 6-Phytase/chemistry , 6-Phytase/metabolism , Klebsiella/genetics , Klebsiella/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Animal Feed , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration , Minerals/metabolism , Minerals/chemistry , Phytic Acid/metabolism , Phytic Acid/chemistry
5.
BMC Biotechnol ; 24(1): 10, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38439037

ABSTRACT

Polymicrobial communities lead to worsen the wound infections, due to mixed biofilms, increased antibiotic resistance, and altered virulence production. Promising approaches, including enzymes, may overcome the complicated condition of polymicrobial infections. Therefore, this study aimed to investigate Staphopain A-mediated virulence and resistance alteration in an animal model of Staphylococcus aureus and Pseudomonas aeruginosa co-infection. S. aureus and P. aeruginosa were co-cultured on the L-929 cell line and wound infection in an animal model. Then, recombinant staphopain A was purified and used to treat mono- and co-infections. Following the treatment, changes in virulence factors and resistance were investigated through phenotypic methods and RT-PCR. Staphopain A resulted in a notable reduction in the viability of S. aureus and P. aeruginosa. The biofilm formed in the wound infection in both animal model and cell culture was disrupted remarkably. Moreover, the biofilm-encoding genes, quorum sensing regulating genes, and virulence factors (hemolysin and pyocyanin) controlled by QS were down-regulated in both microorganisms. Furthermore, the resistance to vancomycin and doripenem decreased following treatment with staphopain A. According to this study, staphopain A might promote wound healing and cure co-infection. It seems to be a promising agent to combine with antibiotics to overcome hard-to-cure infections.


Subject(s)
Coinfection , Wound Infection , Animals , Virulence , Pseudomonas aeruginosa/genetics , Staphylococcus aureus/genetics , Coinfection/drug therapy , Virulence Factors/genetics , Models, Animal , Drug Resistance, Microbial , Wound Infection/drug therapy
6.
Phys Chem Chem Phys ; 26(8): 7149-7156, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38349025

ABSTRACT

Presolvated electron possibility in three oxidation states of aluminum - Al(0), Al(I), and Al(II) - has been theoretically investigated for the Al + 6NH3, Al(CH3) + 5NH3, and Al(CH3)2 + 4NH3 reactions. It has been shown that the metal center adopts a tetrahedral shape for its most stable geometric structure, irrespective of the degree of Al oxidation states. Using different analysis techniques (highest occupied molecular orbital shapes, spin density distributions, and electron delocalization ranges), we showed that presolvated (delocalized) electrons are only formed in the Al(CH3)2(NH3)p coordination complexes when 2 ≤ p ≤ 4. It has also been evidenced that these delocalized electrons being powerful reducing agents allowed two CO2 molecules to be captured and form an oxalate ion in close contact with the [Al2(CH3)2(CH2)2(NH3)4]2+ dication core.

7.
Photodiagnosis Photodyn Ther ; 45: 103971, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218569

ABSTRACT

BACKGROUND: Patients with burn injuries colonized by multidrug-resistant Pseudomonas aeruginosa face increased mortality risk. The efficacy of colistin, a last-resort treatment, is declining as resistance levels rise. P. aeruginosa's robust biofilm exacerbates antibiotic resistance. Photodynamic Inactivation (PDI) shows promise in fighting biofilm. MATERIALS AND METHODS: Nano curcumin (nCur) particles were synthesized, and their chemical characteristics were determined using zeta potential (ZP), dynamic light scattering analysis (DLS), energy-dispersive X-ray (EDX) analysis, and fourier transform infrared (FTIR). We conducted an MTT assay to assess the cytotoxicity of nCur-mediated PDI in combination with nanosilver colistin. The fractional biofilm inhibitory concentration (FBIC) of two P. aeruginosa clinical isolates and P. aeruginosa ATCC 27853 during nCur-mediated PDI@AgNPs@CL was determined using a 3-dimensional (3-D) checkerboard assay. To study the effect of nCur-mediated PDI@AgNPs@CL on lasI, lasR, rhlI, rhlR, pelA, and pslA gene expression, Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was conducted at each isolate's FBIC. The impact of treatments was also investigated using scanning electron microscopy (SEM). RESULTS: The ZP and mean DLS values of the nCur were 10.3 mV and 402.6 ± 24.6 nm, respectively. The distinct functional groups of nCur corresponded with the peaks of FTIR absorption. Moreover, the EDX analysis showed the ratios of different metals in nCur. Cell viability percentages of nCur-mediated PDI@AgNPs@CL at FBIC concentrations of clinical isolates Nos. 30, 354, and P. aeruginosa ATCC 27853 were 91.36 %, 83.20 %, and 92.48 %, respectively. nCur-mediated PDI@AgNPs@CL treatment showed synergistic effects in clinical isolates and P. aeruginosa ATCC 27853 in a 3-D checkerboard assay. All six of the investigated genes showed down-regulation after nCur-mediated PDI@AgNPs@CL treatment. The most suppressed gene during nCur-mediated PDI@AgNPs@CL treatment was the rhlR gene (-11.9-fold) of P. aeruginosa ATCC 27853. The SEM micrographs further proved the connecting cement reduction and biofilm mass mitigation following nCur-mediated PDI@AgNPs@CL treatments. CONCLUSIONS: The combined effect of nCur-mediated PDI and AgNPs@CL synergistically reduce the formation of biofilm in P. aeruginosa. This may be attributable to the suppression of the genes responsible for regulating the production of biofilms.


Subject(s)
Curcumin , Photochemotherapy , Pseudomonas Infections , Silver , Humans , Pseudomonas aeruginosa , Colistin/pharmacology , Curcumin/pharmacology , Photosensitizing Agents/pharmacology , Photochemotherapy/methods , Biofilms
8.
J Infect Public Health ; 17(2): 329-338, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38194764

ABSTRACT

BACKGROUND: Because of the rise in antibiotic resistance and the control of pathogenicity, polymicrobial bacterial biofilms exacerbate wound infections. Since bacterial quorum sensing (QS) signals can dysregulate biofilm development, they are interesting therapeutic treatments. In this study, Pseudomonas Quinolone Signal (PQS) was used to treat an animal model of a wound that had both Staphylococcus aureus and Pseudomonas aeruginosa co-infection. METHODS: S. aureus and P. aeruginosa mono- and co-infection models were developed in vitro on the L-929 cell line and in an animal model of wound infection. Moreover, PQS was extracted and purified using liquid chromatography. Then, the mono- and co-infection models were treated by PQS in vitro and in vivo. RT-PCR analysis was used to look into changes in biofilm, QS, tissue regeneration, and apoptosis genes after the treatment. RESULTS: PQS significantly disrupted established biofilm up to 90% in both in vitro and in vivo models. Moreover, a 93% reduction in the viability of S. aureus and P. aeruginosa was detected during the 10 days of treatment in comparison to control groups. In addition, the biofilm-encoding and QS-regulating genes were down-regulated to 75% in both microorganisms. Also, fewer epithelial cells died when treated with PQS compared to control groups in both mono- and co-infection groups. CONCLUSION: According to this study, PQS may facilitate wound healing by stimulating the immune system and reducing apoptosis. It seems to be a potential medication to use in conjunction with antibiotics to treat infections that are difficult to treat.


Subject(s)
Coinfection , Pseudomonas aeruginosa , Quinolones , Animals , Staphylococcus aureus , Coinfection/drug therapy , Quorum Sensing , Biofilms , Models, Animal , Bacterial Proteins/genetics
9.
Clin Case Rep ; 11(11): e8210, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38028040

ABSTRACT

Key Clinical Message: Biliopleural fistula is a rare but serious complication after liver transplantation that should be managed nonoperatively with antibiotics, pleural drainage, decompression of high-pressure biliary tract, or ultimately surgery in unresponsive cases. Abstract: Bilious pleural effusion is a rare entity often iatrogenic, following hepatobiliary surgeries and biliary interventions, and has been reported only in a limited number of patients after liver transplantation. A 5-year-old girl underwent living donor liver transplantation due to progressive familial intrahepatic cholestasis. At the 7th day of the postoperative course, due to increased liver enzymes and bilirubin levels and intrahepatic bile duct dilatation on sonography, Magnetic Resonance Cholangiopancreaticography followed by a liver biopsy were performed; the findings demonstrated moderate intrahepatic bile duct dilatation and moderate cellular rejection associated with mild cholestasis, respectively. The patient was therefore administered a pulse of methylprednisolone; however, due to fever, peritonitis and also sonographic evidence of infected biloma collection adjacent to the transplanted liver, the patient underwent surgery. Laparotomy and peritoneal washout were performed and a Jackson-Pratt drain was inserted adjacent to the liver cut surface. Succeeding tachypnea on 28th post day, led to detection of right side massive pleural effusion on chest Xray and hence thoracostomy tube was inserted. A diagnosis of biliopleural fistula was established and broad-spectrum intravenous antibiotic therapy was started, followed by cholangiography, fistula closure, and bile duct stricture ballooning and internal-external biliary catheter insertion. The patient was discharged in generally good condition on the 50th posttransplant day. The diagnosis of biliopleural fistula is facilitated with the utilization of chest imaging and pleural fluid analysis, however, a high index of suspicion is required.

10.
Microb Pathog ; 185: 106459, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37995882

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), continues to be a major global health concern. Understanding the molecular intricacies of TB pathogenesis is crucial for developing effective diagnostic and therapeutic approaches. Circular RNAs (circRNAs), a class of single-stranded RNA molecules characterized by covalently closed loops, have recently emerged as potential diagnostic biomarkers in various diseases. CircRNAs have been demonstrated to modulate the host's immunological responses against TB, specifically by reducing monocyte apoptosis, augmenting autophagy, and facilitating macrophage polarization. This review comprehensively explores the roles and mechanisms of circRNAs in TB pathogenesis. We also discuss the growing body of evidence supporting their utility as promising diagnostic biomarkers for TB. By bridging the gap between fundamental circRNA biology and TB diagnostics, this review offers insights into the exciting potential of circRNAs in combatting this infectious disease.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , RNA, Circular/genetics , Biomarkers , RNA/genetics , Tuberculosis/diagnosis , Tuberculosis/genetics , Mycobacterium tuberculosis/genetics
11.
Poult Sci ; 102(11): 103014, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37672835

ABSTRACT

This study aimed to evaluate the effects of a laboratory 3-phytase (the expression of the phyK gene, Lab-Phy) and a commercial 6-phytase (Quantum Blue 40 P, Com-Phy) alone and in combination (corn-soy-based diets) in broilers. A total of 400, day-old Ross 308 male broilers were randomly assigned to 5 treatments with 10 replicate cages (8 chicks/cage) for a 14-day trial. Experimental treatments included the positive control (0.95% Ca and 0.48% nonphytate phosphorus (nPP), PC), negative control (0.90% Ca and 0.22% nPP, NC), and NC which was supplemented with Lab-Phy 250 FTU/kg and Com-Phy 250 FTU/kg alone or in combination of Lab-Phy 125 FTU/kg and Com-Phy 125 FTU/kg. The inclusion of Lab-Phy in the NC diet significantly improved the P and Ca content in the tibia compared to the NC group. Moreover, the inclusion of Com-Phy alone and in combination with Lab-Phy in the NC diet significantly increased the P and Ca content in the tibia compared to the Lab-Phy. The mRNA expression of NaPi-IIb was upregulated in the duodenum by the reduction of nPP and downregulated by the inclusion of any phytase, whereas other nutrient transporters were not influenced by the reduction of nPP or the addition of phytase in the small intestine mucosa. Broilers receiving the NC diet obtained the lowest body weight (BW) and body weight gain (BWG) at 8 to 14 and 1 to 14 d of age. The NC group showed the lowest villi height and surface area, Newcastle disease (ND) antibody titer, and digestibility of nutrients compared to the PC group at 14 d of age. Supplementing the NC diet with the Lab-Phy and Com-Phy individually, or in combination tended to improve BW, BWG, tibia characteristics, villi characteristics, ND, and retained CP and P, and apparent ileal digestibility of CP, P, methionine, and threonine. The present research indicated that the studied traits by the combination of phytases were slightly better than the average of the 2 individually, suggesting there might be some value in combining the laboratory and commercial phytases.

12.
J Arthropod Borne Dis ; 17(1): 63-71, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37609564

ABSTRACT

Background: Cockroaches are one of the most important carriers of pathogenic microorganisms. Therefore, the presence of cockroaches in public places, especially in hospitals, homes, and restaurants, is dangerous, and threatens the health of society, people, and the environment. The aim of this study was evaluation of bacterial contamination of cockroaches and the sensitivity of these bacteria to various antibiotics, captured from Khorramabad City, Iran. Methods: This descriptive cross-sectional study was performed on 150 cockroaches collected from hospital environments, homes, and restaurants in Khorramabad. The outer surface of the cockroaches was washed with physiological saline. The suspension was centrifuged for 5 minutes at 2000rpm. Isolation and identification of bacteria was performed using phenotypic methods. Antibiotic susceptibility testing was performed by disk diffusion method according to Clinical and Laboratory Standard Institute (CLSI) guideline. Results: A total of 100 American cockroaches (66.66%), 28 B. germanica (18.66%) and 22 Blatta orientalis (14.66%) were identified. In total, 97.33% of the collected cockroaches were infected with bacteria. The most bacterial infection of the cockroaches was Escherichia coli, coagulase-negative Staphylococci and Bacillus respectively. The overall results of the antibiogram test showed that the identified bacteria were resistant to cephalothin, ampicillin, cefotaxime, and kanamycin antibiotics, semi-sensitive to ciprofloxacin and sensitive to tetracycline, gentamicin, nitrofurantoin, Trimethoprim/sulfamethoxazole, and Chloramphenicol. Conclusion: Infection of cockroaches with pathogenic bacterial agents in hospital, residential, and restaurant environments, as well as the observation of bacterial resistance to some common antibiotics is worrying.

13.
J Appl Genet ; 64(3): 591-597, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37574492

ABSTRACT

Stenotrophomonas maltophilia is an emerging multidrug-resistant organism with an increasing frequency of hospital-acquired infections predominantly in developing countries. The purpose of this study was to determine the antibiotic resistance and frequency of the smeD, class 1 integron, and sul1 genes in clinical isolates of S. maltophilia in two Iranian provinces. From January 2020 to September 2021, 38 clinical isolates of S. maltophilia were collected from patients in hospitals in Tabriz and Sanandaj provinces of Iran. S. maltophilia isolates were confirmed by standard bacteriological tests and 16S rRNA gene PCR. Disk diffusion and the MIC test strip methods were used to determine the antibiotic resistance patterns. PCR was performed to investigate the presence of smeD, class 1 integron, and sul1 genes. The antimicrobial test for the isolated S. maltophilia showed a high level of sensitivity against most of the antibiotics used. Maximum sensitivity was recorded for ciprofloxacin (100% (38/38)) and levofloxacin 100% (38/38), followed by ceftazidime (97.36% (37/38)), trimethoprim-sulfamethoxazole (81.57% (31/38)), ticarcillin-clavulanate (60.52% (23/38)), and piperacillin-tazobactam (55.26% (21/38)). We observed a high prevalence of smeD (100% (38/38)) and class 1 integron (94.73% (36/38)) genes in the isolates, and none of the isolates carried the sul1 gene. The findings from this study indicate that resistance to trimethoprim-sulfamethoxazole was not observed, and still, trimethoprim-sulfamethoxazole is the best drug with desirable antimicrobial effect in the treatment of nosocomial infections caused by S. maltophilia strains. Despite the observation of a high number of class 1 integron, the sul1 gene was not observed, which indicates the role of this gene in high-level trimethoprim-sulfamethoxazole resistance and not having a role in low-level resistance. Based on our results, clinical microbiology laboratories need continuous surveillance of resistance rates to trimethoprim-sulfamethoxazole, because of the possibility of S. maltophilia acquiring trimethoprim-sulfamethoxazole-resistance by mobile gen elements.


Subject(s)
Anti-Infective Agents , Cross Infection , Stenotrophomonas maltophilia , Humans , Stenotrophomonas maltophilia/genetics , Integrons/genetics , Iran , RNA, Ribosomal, 16S , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Anti-Infective Agents/pharmacology , Cross Infection/drug therapy , Cross Infection/microbiology
14.
Oman Med J ; 38(3): e505, 2023 May.
Article in English | MEDLINE | ID: mdl-37346891

ABSTRACT

Objectives: The aim of this study was to determine the phenotypic and genotypic characteristics of Stenotrophomonas maltophilia isolates obtained from blood culture samples of pediatric patients hospitalized in Borujerd and Hamadan hospitals in western Iran. Methods: Oxidase-negative isolates were collected from the blood cultures of pediatric patients. S. maltophilia isolates were identified and confirmed by routine microbiological and molecular testing. Antibiotic susceptibility of the isolates was determined. The phenotypic and genotypic biofilm-forming ability of the isolates were investigated. Molecular typing of all isolates was performed by repetitive element sequence-based polymerase chain reaction. Results: Out of 450 oxidase-negative bacilli, 72 (16.0%) were identified as S. maltophilia isolates. Biofilm assay results showed strong biofilm formation in 19 (26.4%) isolates, moderate in 38 (52.8%), weak in 10 (13.9%), and no biofilm formation in five (6.9%) isolates. Biofilm-associated genes rmlA, rpfF, and spgM were detected respectively in 59 (81.9%), 54 (75.0%), and 72 (100%) of isolates. Antimicrobial susceptibility testing showed that 67 (93.1%) isolates were sensitive to trimethoprim-sulfamethoxazole. All isolates were sensitive to levofloxacin and resistant to ceftazidime. The S. maltophilia isolates were grouped into 14 different types of repetitive sequence by repetitive element sequence-based polymerase chain reaction analysis. Conclusions: The results of this study indicate that S. maltophilia should be considered an important opportunistic pathogen in pediatric units. Different genotypes of S. maltophilia with the ability to form a biofilm (an important virulence factor) were circulating in the hospitals investigated. Levofloxacin and trimethoprim-sulfamethoxazole are recommended to treat S. maltophilia infections.

15.
J Wound Care ; 32(Sup4a): xxxi-xxxviii, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37029985

ABSTRACT

BACKGROUND: Staphylococcus aureus is one of the most frequently isolated microorganisms from burn wounds. Antimicrobial photodynamic therapy (aPDT) is a new strategy that may improve antimicrobial treatment. METHOD: This study evaluated three meticillin-resistant Staphylococcus aureus (MRSA) and three meticillin-sensitive Staphylococcus aureus (MSSA) clinical isolates, which produced a biofilm with 0.1mg/ml Toluidine Blue O (TBO) (Sigma-Aldrich, Germany) with an energy density of 45J/cm2 and 90J/cm2, for MRSA and MSSA, respectively. The antibiofilm potential of aPDT with TBO was analysed using crystal violet assays and scanning electron microscopy. RESULTS: TBO-aPDT significantly degraded the biofilm formed by MRSA and MSSA clinical isolates (p<0.05). CONCLUSION: Our results indicated that aPDT is an effective approach to combat bacterial biofilms associated with burn wound infection. aPDT could provide a supplemental to the treatment of wound and tissue infection, and patients with burns may benefit from combined treatments.


Subject(s)
Anti-Infective Agents , Burns , Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Staphylococcal Infections , Wound Infection , Humans , Methicillin , Photochemotherapy/methods , Staphylococcus aureus , Anti-Infective Agents/therapeutic use , Staphylococcal Infections/microbiology , Burns/complications , Burns/drug therapy , Burns/microbiology , Wound Infection/drug therapy , Biofilms , Anti-Bacterial Agents/therapeutic use
16.
Lasers Med Sci ; 38(1): 112, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37103664

ABSTRACT

Periodontal disease is one of the most common chronic diseases in the oral cavity that causes tooth loss. Root scaling and leveling cannot eliminate all periodontal pathogens, and the use of antibacterial agents or lasers can increase the efficiency of mechanical methods. The aim of this study was to evaluate and compare the antibacterial activity of cadmium telluride nanocrystals in combination with 940-nm laser diode. Cadmium telluride nanocrystals were prepared by a green route of synthesis in aqueous medium. The results of this study showed that cadmium telluride nanocrystals significantly inhibit the growth of P. gingivalis. The antibacterial property of this nanocrystal increases with increasing its concentration, laser diode 940-nm irradiation and with increasing the time. It was shown that the antibacterial activity of combination of 940-nm laser diode and cadmium telluride nanocrystals is greater than the effect of either alone and can have a similar effect with its long-term presence of microorganisms. This is very important because it is not possible to use these nanocrystals in the mouth and in the periodontal bag for a long time.


Subject(s)
Nanoparticles , Periodontal Diseases , Humans , Bacteria, Anaerobic , Anti-Bacterial Agents/pharmacology , Periodontal Diseases/drug therapy , Lasers, Semiconductor/therapeutic use , Porphyromonas gingivalis
17.
BMC Microbiol ; 23(1): 84, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36991311

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa is a common co-infecting pathogen recognized among COVID-19 patients. We aimed to investigate the antimicrobial resistance patterns and molecular typing of Pseudomonas aeruginosa isolates among Coronavirus disease-19 patients. METHODS: Between December 2020 and July 2021, 15 Pseudomonas aeruginosa were isolated from COVID-19 patients in the intensive care unit at Sina Hospital in Hamadan, west of Iran. The antimicrobial resistance of the isolates was determined by disk diffusion and broth microdilution methods. The double-disk synergy method, Modified Hodge test, and polymerase chain reaction were utilized to detect Pseudomonas aeruginosa extended spectrum beta-lactamase and carbapenemase producers. Microtiter plate assay was performed to evaluate the biofilm formation ability of the isolates. The isolates phylogenetic relatedness was revealed using the multilocus variable-number tandem-repeat analysis method. RESULTS: The results showed Pseudomonas aeruginosa isolates had the most elevated resistance to imipenem (93.3%), trimethoprim-sulfamethoxazole (93.3%), ceftriaxone (80%), ceftazidime (80%), gentamicin (60%), levofloxacin (60%), ciprofloxacin (60%), and cefepime (60%). In the broth microdilution method, 100%, 100%, 20%, and 13.3% of isolates showed resistance to imipenem, meropenem, polymyxin B, and colistin, respectively. Ten (66.6%) isolates were identified as multiple drug resistance. Carbapenemase enzymes and extended spectrum beta-lactamases were identified in 66.6% and 20% of the isolates, respectively and the biofilm formation was detected in 100% of the isolates. The blaOXA-48, blaTEM, blaIMP, blaSPM, blaPER, blaVEB, blaNDM, blaSHV, and blaCTX-M genes were detected in 100%, 86.6%, 86.6%, 40%, 20%, 20%, 13.3%, 6.6%, and 6.6% of the isolates, respectively. The blaVIM, blaGIM, blaGES, and blaMCR-1 genes were not identified in any of the isolates. The MLVA typing technique showed 11 types and seven main clusters and most isolates belong to cluster I, V and VII. CONCLUSION: Due to the high rate of antimicrobial resistance, as well as the genetic diversity of Pseudomonas aeruginosa isolates from COVID-19 patients, it is indispensable to monitor the antimicrobial resistance pattern and epidemiology of the isolates on a regular basis.


Subject(s)
COVID-19 , Drug Resistance, Bacterial , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas Infections/complications , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology , COVID-19/complications , COVID-19/microbiology , Drug Resistance, Bacterial/genetics , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests , Multilocus Sequence Typing , Genetic Variation , Humans , Iran/epidemiology , Male , Female , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over
18.
New Microbes New Infect ; 52: 101090, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36744172

ABSTRACT

Background: During the Coronavirus Pandemic, the use of masks has increased significantly. The lack of control on hygiene protocols and the need to use PPE properly increases the spread of bacterial infection. The purpose of this study was to investigate the degree of contamination and frequency of bacterial species isolated from surgical and N95 masks used by hospital personnel. Methods: A total number of 175 masks were collected from staff working in Sina hospital (Hamadan province, Iran) during the first six months of 2022. The bacterial contamination of masks were evaluated and identified using biochemical kits. Antimicrobial susceptibility testing of the isolates were done using Kirby-Bauer methods and MIC were assessed for each isolate against different disinfectants (Sodium hypochlorite 5%, Hydrogen Peroxide 3%, Ethanol 70% and Deconex). Results: Of 175 masks, 471 bacterial isolates were detected including 9 species. The most prevalent strain were Coagulase negative Staphylococcus (28%) followed by Acinetobacter (20.8%) and Pseudomonas (13.8%), while, Klebsiealla and Enterococcus were the least frequent species with the rate of 3.8% and 1.2%, respectively. The results of MIC methods indicated that all 471 strains were resistant to ehtanol70% and sensitive to hydrogen peroxide 3%. Furthermore, the mean average of Deconex inhibitory effect is lower than Sodium hypochlorite 5%. Conclusions: According to the results of this study, there was a high prevalence of CoNS, Acinetobacter and Pseudomonas in hospital with a high resistance pattern against antibiotics especially Ampicillin and disinfectants.

19.
Mol Biol Rep ; 50(3): 2077-2083, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36542233

ABSTRACT

OBJECTIVE: One of the systemic infections is Brucellosis which is caused by facultative intracellular bacteria of the genus Brucella. Vitamin D is a fat-soluble prohormone, that metabolizes enzymes and its intracellular receptor creates the active hormone and also mediate in responses of immune system. METHODS: Current research consists of 102 patients with brucellosis who were selected based on culture, PCR results serology, and clinical symptoms. The control group composed of 102 healthy people. The polymorphism of genes (Bsm I, Fok I, Taq I, Apa I) encoding Vitamin D receptor (VDR) were assessed by the PCR-RFLP method. RESULTS: The results showed that ff, tt, aa, and bb genotypes in Fok I, ApaI, TaqI, and BsmI were significant in case/control groups (P-value ≤ 0.0001). The genotype frequency AA in the control group is higher than that of the study group, while genotype frequency aa in the study group is more than the control. The odds ratio for brucellosis in individuals with ff genotype is 37 times higher than that of Ff genotype. Also, the odds ratio of brucellosis in individuals with genotype tt, aa, and bb was 12, 53, and 6 times higher than those of the Aa, Bb, and Tt genotypes. CONCLUSION: The genotypes aa and ff in the positions of the ApaI and FokI are of higher importance. The brucellosis risk in individuals accompanied aa genotype at Apa I is 53 times higher than that of the genotype AA, in other words, AA and BB, TT and FF genotypes are protective against the disease.


Subject(s)
Brucellosis , Receptors, Calcitriol , Humans , Brucellosis/genetics , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Receptors, Calcitriol/genetics , Vitamin D
20.
PLoS One ; 17(11): e0277287, 2022.
Article in English | MEDLINE | ID: mdl-36350834

ABSTRACT

Staphylococcus epidermis is one of the most frequent causes of device-associated infections due to biofilm formation. Current reports noted that subinhibitory concentrations of antibiotics induce biofilm production in some bacteria. Accordingly, we evaluated the effect of exposure of different subinhibitory concentrations of cloxacillin, cefazolin, clindamycin, and vancomycin on the biofilm formation of methicillin-resistant S. epidermidis (MRSE). Antimicrobial susceptibility testing and minimum inhibitory/bactericidal concentration of antimicrobial agents were determined. MRSE isolates were selected, and their biofilm formation ability was evaluated. The effect of subinhibitory concentrations of cloxacillin, cefazolin, clindamycin, and vancomycin, antibiotics selected among common choices in the clinic, on MRSE biofilm formation was determined by the microtitre method. Besides, the effect of subinhibitory concentrations of cloxacillin, cefazolin, clindamycin, and vancomycin on the expression of the biofilm-associated genes icaA and atlE was evaluated by Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR). Antimicrobial susceptibility patterns of MRSE strains showed a high level of resistance as follows: 80%, 53.3%, 33.3%, 33.3%, and 26.6%, for erythromycin, trimethoprim-sulfamethoxazole, tetracycline, clindamycin, and gentamicin, respectively. Besides, 73.3% of S. epidermidis strains were Multidrug-resistant (MDR). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were in the range of 0.5 to512 µg/mL and 1 to1024 µg/mL for cloxacillin, 0.125 to256 µg/mL and 1 to512 µg/mL for cefazolin, 0.125 to64 µg/mL and 4 to>1024 µg/mL for clindamycin, and 2 to32 µg/mL and 4 to32 µg/mL for vancomycin, respectively. The findings showed that subinhibitory concentrations of cloxacillin, cefazolin, and clindamycin induce biofilm production in MRSE strains. In particular, the OD values of strains were in the range of 0.09-0.95, 0.05-0.86, and 0.06-1 toward cloxacillin, cefazolin, and clindamycin, respectively. On the other hand, exposure to subinhibitory vancomycin concentrations did not increase the biofilm formation in MRSE strains. The findings also demonstrated that sub-MIC of antibiotics up-regulated biofilm-associated genes. In particular, atlE and icaA were up-regulated 0.062 to 1.16 and 0.078 to 1.48 folds, respectively, for cloxacillin, 0.11 to 0.8, and 0.1 to 1.3 folds for cefazolin, 0.18 to 0.98, and 0.19 to 1.4 folds, respectively, for clindamycin. In contrast, the results showed that sub-MIC of vancomycin did not increase the biofilm-associated genes. These findings overall show that exposure to sub-MIC of traditional antibiotics can cause biofilm induction in MRSE, thereby increasing the survival and persistence on various surfaces that worsen the condition of comorbid infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus epidermidis , Cefazolin/pharmacology , Clindamycin/pharmacology , Vancomycin/pharmacology , Methicillin Resistance , Cloxacillin , Staphylococcal Infections/microbiology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms
SELECTION OF CITATIONS
SEARCH DETAIL
...