Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38700963

ABSTRACT

Intracortical brain computer interfaces (iBCIs) utilizing extracellular recordings mainly employ in vivo signal processing application-specific integrated circuits (ASICs) to detect action potentials (spikes). Conventionally, "brain-switches" based on spiking activity have been employed to realize asynchronous (self-paced) iBCIs, estimating when the user involves in the underlying BCI task. Several studies have demonstrated that local field potentials (LFPs) can effectively replace action potentials, drastically reducing the power consumption and processing requirements of in vivo ASICs. This article presents the first LFP-based brain-switch design and implementation using gated recurrent neural networks (RNNs). Compared to the previously reported brain-switches, our design requires no exhaustive learning phase for the estimation of optimal recording channels or frequency band selection, making it more applicable to practical asynchronous iBCIs. The synthesized ASIC of the designed in vivo LFP-based feature extraction unit, in a standard 180-nm CMOS process, occupies only 0.09 mm2 of silicon area, and the post place-and-route synthesis results indicate that it consumes 91.87 nW of power while operating at 2 kHz. Compared to the previously published ASICs, the proposed LFP-based brain-switch consumes the least power for in vivo digital signal processing and achieves comparable state estimation performance to that of spike-based brain-switches.

2.
IEEE Trans Biomed Circuits Syst ; 18(3): 691-701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38285576

ABSTRACT

Conventional in vivo neural signal processing involves extracting spiking activity within the recorded signals from an ensemble of neurons and transmitting only spike counts over an adequate interval. However, for brain-computer interface (BCI) applications utilizing continuous local field potentials (LFPs) for cognitive decoding, the volume of neural data to be transmitted to a computer imposes relatively high data rate requirements. This is particularly true for BCIs employing high-density intracortical recordings with hundreds or thousands of electrodes. This article introduces the first autoencoder-based compression digital circuit for the efficient transmission of LFP neural signals. Various algorithmic and architectural-level optimizations are implemented to significantly reduce the computational complexity and memory requirements of the designed in vivo compression circuit. This circuit employs an autoencoder-based neural network, providing a robust signal reconstruction. The application-specific integrated circuit (ASIC) of the in vivo compression logic occupies the smallest silicon area and consumes the lowest power among the reported state-of-the-art compression ASICs. Additionally, it offers a higher compression rate and a superior signal-to-noise and distortion ratio.


Subject(s)
Algorithms , Brain-Computer Interfaces , Data Compression , Neural Networks, Computer , Signal Processing, Computer-Assisted , Data Compression/methods , Animals , Neurons/physiology , Electroencephalography/methods
3.
J Neural Eng ; 20(1)2023 01 27.
Article in English | MEDLINE | ID: mdl-36645913

ABSTRACT

Objective.Advances in brain-machine interfaces (BMIs) can potentially improve the quality of life of millions of users with spinal cord injury or other neurological disorders by allowing them to interact with the physical environment at their will.Approach.To reduce the power consumption of the brain-implanted interface, this article presents the first hardware realization of anin vivointention-aware interface via brain-state estimation.Main Results.It is shown that incorporating brain-state estimation reduces thein vivopower consumption and reduces total energy dissipation by over 1.8× compared to those of the current systems, enabling longer better life for implanted circuits. The synthesized application-specific integrated circuit (ASIC) of the designed intention-aware multi-unit spike detection system in a standard 180 nm CMOS process occupies 0.03 mm2of silicon area and consumes 0.63 µW of power per channel, which is the least power consumption among the currentin vivoASIC realizations.Significance.The proposed interface is the first practical approach towards realizing asynchronous BMIs while reducing the power consumption of the BMI interface and enhancing neural decoding performance compared to those of the conventional synchronous BMIs.


Subject(s)
Brain-Computer Interfaces , Quality of Life , Brain , Prostheses and Implants , Computers
4.
Biomed Eng Lett ; 13(1): 73-83, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36711161

ABSTRACT

While brain-implantable neural spike sorting can be realized using efficient algorithms, the presence of noise may make it difficult to maintain high-peformance sorting using conventional techniques. In this article, we explore the use of partially binarized neural networks (PBNNs), to the best of our knowledge for the first time, for sorting of neural spike feature vectors. It is shown that compared to the waveform template-based methods, PBNNs offer robust spike sorting over various datasets and noise levels. The ASIC implementation of the PBNN-based spike sorting system in a standard 180-nm CMOS process is presented. The post place and route simulations results show that the synthesized PBNN consumes only 0.59 µ W of power from a 1.8 V supply while operating at 24 kHz and occupies 0.15 mm 2 of silicon area. It is shown that the designed PBNN-based spike sorting system not only offers comparable accuracy to the state-of-the-art spike sorting systems over various noise levels and datasets, it also occupies a smaller silicon area and consumes less power and energy. This makes PBNNs a viable alternative towards the implementation of brain-implantable spike sorting systems.

5.
J Neural Eng ; 19(4)2022 07 22.
Article in English | MEDLINE | ID: mdl-35820400

ABSTRACT

Objective.The ability to reliably detect neural spikes from a relatively large population of neurons contaminated with noise is imperative for reliable decoding of recorded neural information.Approach.This article first analyzes the accuracy and feasibility of various potential spike detection techniques forin vivorealizations. Then an accurate and computationally-efficient spike detection module that can autonomously adapt to variations in recording channels' statistics is presented.Main results.The accuracy of the chosen candidate spike detection technique is evaluated using both synthetic and real neural recordings. The designed detector also offers the highest decoding performance over two animal behavioral datasets among alternative detection methods.Significance.The implementation results of the designed 128-channel spike detection module in a standard 180 nm CMOS process is among the most area and power-efficient spike detection ASICs and operates within the tissue-safe constraints for brain implants, while offering adaptive noise estimation.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Action Potentials , Animals , Neurons/physiology , Signal-To-Noise Ratio
6.
Biomed Eng Lett ; 12(2): 185-195, 2022 May.
Article in English | MEDLINE | ID: mdl-35529345

ABSTRACT

Conventional spike sorting and motor intention decoding algorithms are mostly implemented on an external computing device, such as a personal computer. The innovation of high-resolution and high-density electrodes to record the brain's activity at the single neuron level may eliminate the need for spike sorting altogether while potentially enabling in vivo neural decoding. This article explores the feasibility and efficient realization of in vivo decoding, with and without spike sorting. The efficiency of neural network-based models for reliable motor decoding is presented and the performance of candidate neural decoding schemes on sorted single-unit activity and unsorted multi-unit activity are evaluated. A programmable processor with a custom instruction set architecture, for the first time to the best of our knowledge, is designed and implemented for executing neural network operations in a standard 180-nm CMOS process. The processor's layout is estimated to occupy 49 mm 2 of silicon area and to dissipate 12 mW of power from a 1.8 V supply, which is within the tissue-safe operation of the brain.

7.
Article in English | MEDLINE | ID: mdl-33296305

ABSTRACT

This article presents the design and efficient hardware implementation of binarized neural networks (BNNs) for brain-implantable neural spike sorting. In contrast to the conventional artificial neural networks (ANNs), in which the weights and activation functions of neurons are represented using real values, the BNNs utilize binarized weights and activation functions to dramatically reduce the memory requirement and computational complexity of the ANNs. The designed BNN is trained using several realistic neural datasets to verify its accuracy for neural spike sorting. The application-specific integrated circuit (ASIC) implementation of the designed BNN in a standard 0.18- [Formula: see text] CMOS process occupies 0.33 mm 2 of silicon area. Power consumption estimation of the ASIC layout shows that the BNN dissipates [Formula: see text] of power from a 1.8 V supply while operating at 24 kHz. The designed BNN-based spike sorting system is also implemented on a field-programmable gate array and is shown to reduce the required on-chip memory by 89% compared to those of the alternative state-of-the-art spike sorting systems. To the best of our knowledge, this is the first work employing BNNs for real-time in vivo neural spike sorting.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Action Potentials , Humans , Neural Networks, Computer , Neurons
SELECTION OF CITATIONS
SEARCH DETAIL
...