Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 34(9): 4019-4028, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35573106

ABSTRACT

Quantum dots (QDs) are considered for devices like light-emitting diodes (LEDs) and photodetectors as a result of their tunable optoelectronic properties. To utilize the full potential of QDs for optoelectronic applications, control over the charge carrier density is vital. However, controlled electronic doping of these materials has remained a long-standing challenge, thus slowing their integration into optoelectronic devices. Electrochemical doping offers a way to precisely and controllably tune the charge carrier concentration as a function of applied potential and thus the doping levels in QDs. However, the injected charges are typically not stable after disconnecting the external voltage source because of electrochemical side reactions with impurities or with the surfaces of the QDs. Here, we use photopolymerization to covalently bind polymerizable electrolyte ions to polymerizable solvent molecules after electrochemical charge injection. We discuss the importance of using polymerizable dopant ions as compared to nonpolymerizable conventional electrolyte ions such as LiClO4 when used in electrochemical doping. The results show that the stability of charge carriers in QD films can be enhanced by many orders of magnitude, from minutes to several weeks, after photochemical ion fixation. We anticipate that this novel way of stable doping of QDs will pave the way for new opportunities and potential uses in future QD electronic devices.

2.
Nano Lett ; 21(22): 9426-9432, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34780185

ABSTRACT

Low-dimensional semiconductors have found numerous applications in optoelectronics. However, a quantitative comparison of the absorption strength of low-dimensional versus bulk semiconductors has remained elusive. Here, we report generality in the band-edge light absorptance of semiconductors, independent of their dimensions. First, we provide atomistic tight-binding calculations that show that the absorptance of semiconductor quantum wells equals mπα (m = 1 or 2 with α as the fine-structure constant), in agreement with reported experimental results. Then, we show experimentally that a monolayer (superlattice) of quantum dots has similar absorptance, suggesting an absorptance quantum of mπα per (confined) exciton diameter. Extending this idea to bulk semiconductors, we experimentally demonstrate that an absorptance quantum equal to mπα per exciton Bohr diameter explains their widely varying absorption coefficients. We thus provided compelling evidence that the absorptance quantum πα per exciton diameter rules the band-edge absorption of all direct semiconductors, regardless of their dimension.

3.
ACS Energy Lett ; 6(7): 2519-2525, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34307881

ABSTRACT

Lead halide perovskite nanocrystals have drawn attention as active light-absorbing or -emitting materials for opto-electronic applications due to their facile synthesis, intrinsic defect tolerance, and color-pure emission ranging over the entire visible spectrum. To optimize their application in, e.g., solar cells and light-emitting diodes, it is desirable to gain control over electronic doping of these materials. However, predominantly due to the intrinsic instability of perovskites, successful electronic doping has remained elusive. Using spectro-electrochemistry and electrochemical transistor measurements, we demonstrate here that CsPbBr3 nanocrystals can be successfully and reversibly p-doped via electrochemical hole injection. From an applied potential of ∼0.9 V vs NHE, the emission quenches, the band edge absorbance bleaches, and the electronic conductivity quickly increases, demonstrating the successful injection of holes into the valence band of the CsPbBr3 nanocrystals.

4.
J Phys Chem C Nanomater Interfaces ; 123(22): 14058-14066, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31205579

ABSTRACT

It has been shown recently that atomically coherent superstructures of a nanocrystal monolayer in thickness can be prepared by self-assembly of monodisperse PbSe nanocrystals, followed by oriented attachment. Superstructures with a honeycomb nanogeometry are of special interest, as theory has shown that they are regular 2-D semiconductors, but with the highest valence and lowest conduction bands being Dirac-type, that is, with a linear energy-momentum relation around the K-points in the zone. Experimental validation will require cryogenic measurements on single sheets of these nanocrystal monolayer superstructures. Here, we show that we can incorporate these fragile superstructures into a transistor device with electrolyte gating, control the electron density, and measure the electron transport characteristics at room temperature. The electron mobility is 1.5 ± 0.5 cm2 V-1 s-1, similar to the mobility observed with terahertz spectroscopy on freestanding superstructures. The terahertz spectroscopic data point to pronounced carrier scattering on crystallographic imperfections in the superstructure, explaining the limited mobility.

SELECTION OF CITATIONS
SEARCH DETAIL
...