Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Anticancer Agents Med Chem ; 24(6): 423-435, 2024.
Article in English | MEDLINE | ID: mdl-38204258

ABSTRACT

OBJECTIVE: Several novel fluorinated chalcone derivatives were synthesized, and their in vitro anticervical cancer activity and mechanism of action were investigated using the parent nucleus of licorice chalcone as the lead compound backbone and MDM2-p53 as the target. METHODS: In this study, 16 novel chalcone derivatives (3a-3r) were designed and synthesized by molecular docking technology based on the licorice chalcone parent nucleus as the lead compound scaffold and the cancer apoptosis regulatory target MDM2-p53. The structures of these compounds were confirmed by 1H-NMR, 13C-NMR, and HR-ESI-MS. The inhibitory effects of the compounds on the proliferation of three human cervical cancer cell lines (SiHa, HeLa, and C-33A) and two normal cell lines (H8 and HaCaT) were determined by MTT assay, and the initialstructure-activity relationship was analyzed. Transwell and flow cytometry were used to evaluate the effects of target compounds on the inhibition of cancer cell migration and invasion, apoptosis induction, and cell cycle arrest. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) were used to detect the effects of candidate compounds on mRNA, p53, and Murine double minute 2 (MDM2) protein expression. The binding characteristics of the target compounds to the MDM2 protein target in the p53-MDM2 pathway were evaluated by molecular docking technology. RESULTS: The target compounds had considerable inhibitory activity on the proliferation of three cervical cancer cell lines. Among them, compound 3k (E)-3-(4-(dimethylamino)phenyl)-2-methyl-1-(3-(trifluoromethyl)phenyl) prop-2-en-1-one) showed the highest activity against HeLa cells (IC50=1.08 µmol/L), which was better than that of the lead compound Licochalcone B, and 3k showed lower toxicity to both normal cells. Compound 3k strongly inhibited the migration and invasion of HeLa cells and induced apoptosis and cell cycle arrest at the G0/G1 phase. Furthermore, compound 3k upregulated the expression of p53 and BAX and downregulated the expression of MDM2, MDMX, and BCL2. Moreover, molecular docking results showed that compound 3k could effectively bind to the MDM2 protein (binding energy: -9.0 kcal/mol). These results suggest that the compounds may activate the p53 signaling pathway by inhibiting MDM2 protein, which prevents cancer cell proliferation, migration, and invasion and induces apoptosis and cell cycle arrest in cancer cells. CONCLUSION: This study provides a new effective and low-toxicity drug candidate from licochalcone derivatives for treating cervical cancer.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53 , Uterine Cervical Neoplasms , Humans , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Molecular Structure , Apoptosis/drug effects , Female , Molecular Docking Simulation , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Cell Movement/drug effects , Chalcone/pharmacology , Chalcone/chemistry , Chalcone/chemical synthesis
2.
Molecules ; 28(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38067428

ABSTRACT

In this study, a collection of newly developed α-methylchalcone derivatives were synthesized and assessed for their inhibitory potential against human cervical cancer cell lines (HeLa, SiHa, and C33A) as well as normal human cervical epithelial cells (H8). Notably, compound 3k exhibited substantial inhibitory effects on both HeLa and HeLa/DDP cells while demonstrating lower toxicity toward H8 cells. Furthermore, the compound 3k was found to induce apoptosis in both HeLa and HeLa/DDP cells while also inhibiting the G2/M phase, resulting in a decrease in the invasion and migration capabilities of these cells. When administered alongside cisplatin, 3k demonstrated a significant reduction in the resistance of HeLa/DDP cells to cisplatin, as evidenced by a decrease in the resistance index (RI) value from 7.90 to 2.10. Initial investigations into the underlying mechanism revealed that 3k did not impact the expression of P-gp but instead facilitated the accumulation of rhodamine 123 in HeLa/DDP cells. The results obtained from CADD docking analysis demonstrated that 3k exhibits stable binding to microtubule proteins and P-gp targets, forming hydrogen bonding interaction forces. Immunofluorescence analysis further revealed that 3k effectively decreased the fluorescence intensity of α and ß microtubules in HeLa and HeLa/DDP cells, resulting in disruptions in cell morphology, reduction in cell numbers, nucleus coagulation, and cell rupture. Additionally, Western blot analysis indicated that 3k significantly reduced the levels of polymerized α and ß microtubule proteins in both HeLa and HeLa/DDP cell lines while concurrently increasing the expression of dissociated α and ß microtubule proteins. The aforementioned findings indicate a potential correlation between the inhibitory effects of 3k on HeLa and HeLa/DDP cells and its ability to inhibit tubulin and P-gp.


Subject(s)
Antineoplastic Agents , Uterine Cervical Neoplasms , Female , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Antineoplastic Agents/chemistry , Uterine Cervical Neoplasms/drug therapy , Drug Resistance, Neoplasm , HeLa Cells , Tubulin , Cell Line, Tumor , Apoptosis , Cell Proliferation
3.
Molecules ; 28(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37299013

ABSTRACT

This study involved the design and synthesis of 21 new nitrogen-containing heterocyclic chalcone derivatives utilizing the active substructure splicing principle, with glycyrrhiza chalcone serving as the lead compound. The targets of these derivatives were VEGFR-2 and P-gp, and their efficacy against cervical cancer was evaluated. Following preliminary conformational analysis, compound 6f ((E)-1-(2-hydroxy-5-((4-hydroxypiperidin-1-yl)methyl)-4-methoxyphenyl)-3-(4-((4-methylpiperidin-1-yl)methyl)phenyl)prop-2-en-1-one) exhibited significant antiproliferative activity against human cervical cancer cells (HeLa and SiHa) with IC50 values of 6.52 ± 0.42 and 7.88 ± 0.52 µM, respectively, when compared to other compounds and positive control drugs. Additionally, this compound demonstrated lower toxicity towards human normal cervical epithelial cells (H8). Subsequent investigations have demonstrated that 6f exerts an inhibitory impact on VEGFR-2, as evidenced by its ability to impede the phosphorylation of p-VEGFR-2, p-PI3K, and p-Akt proteins in HeLa cells. This, in turn, results in the suppression of cell proliferation and the induction of both early and late apoptosis in a concentration-dependent manner. Furthermore, 6f significantly curtails the invasion and migration of HeLa cells. In addition, 6f had an IC50 of 7.74 ± 0.36 µM against human cervical cancer cisplatin-resistant HeLa/DDP cells and a resistance index (RI) of 1.19, compared to 7.36 for cisplatin HeLa cells. The combination of 6f and cisplatin resulted in a significant reduction in cisplatin resistance in HeLa/DDP cells. Molecular docking analyses revealed that 6f exhibited binding free energies of -9.074 and -9.823 kcal·mol-1 to VEGFR-2 and P-gp targets, respectively, and formed hydrogen bonding forces. These findings suggest that 6f has potential as an anti-cervical cancer agent and may reverse cisplatin-resistant activity in cervical cancer. The introduction of the 4-hydroxy piperidine and 4-methyl piperidine rings may contribute to its efficacy, and its mechanism of action may involve dual inhibition of VEGFR-2 and P-gp targets.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Uterine Cervical Neoplasms , Female , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , HeLa Cells , Chalcones/pharmacology , Chalcones/therapeutic use , Vascular Endothelial Growth Factor Receptor-2 , Molecular Docking Simulation , Chalcone/pharmacology , Nitrogen/pharmacology , Uterine Cervical Neoplasms/metabolism , Cell Proliferation , Antineoplastic Agents/chemistry , Cell Line, Tumor
4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-959223

ABSTRACT

@#Chalcones are polyphenolic flavonoid substances with various pharmacological effects and low toxicity.In this study, 15 novel trifluoromethyl chalcone derivatives (3a-3o) were designed and synthesized using the chalcone nucleus of natural licorice chalcone as the lead compound skeleton in order to find the candidate drugs with high efficiency and low toxicity against cervical cancer.The structures of the target compounds were confirmed by 1H NMR, 13C NMR and HRMS. The inhibitory activities of compounds 3a-3o, licorice chalcone, cisplatin and Nutlin3a on SiHa, HeLa and C-33A human cervical cancer cells and H8 and HaCaT normal cells were determined by MTT assay, and the structure-activity relationship was analyzed.Transwell and flow cytometry methods were used to assess the target compounds'' ability to inhibit cell migration and invasion, promote apoptosis, and arrest the cell cycle.Molecular docking technology was used to further study the binding characteristics of the target compound with MDM2 protein.The results showed that the compounds had different degrees of inhibitory activity against the three types of cervical cancer cells.Compound 3n showed the strongest activity against HeLa cells (IC50 = 11.69 μmol/L), which was superior to the lead compound, and had lower toxicity against the two normal cells.Compound 3n was found to significantly inhibit the migration and invasion of HeLa cells, induce apoptosis and arrest the cell cycle at G2/M phase.The results of molecular docking showed that the effective binding of compound 3n to MDM2 protein may be one of its anti-tumor mechanisms.This study provides an experimental basis for the screening of new anti-cervical cancer candidate drug from chalcone derivatives.

SELECTION OF CITATIONS
SEARCH DETAIL
...