Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Marek Ostaszewski; Anna Niarakis; Alexander Mazein; Inna Kuperstein; Robert Phair; Aurelio Orta-Resendiz; Vidisha Singh; Sara Sadat Aghamiri; Marcio Luis Acencio; Enrico Glaab; Andreas Ruepp; Gisela Fobo; Corinna Montrone; Barbara Brauner; Goar Frishman; Julia Somers; Matti Hoch; Shailendra Kumar Gupta; Julia Scheel; Hanna Borlinghaus; Tobias Czauderna; Falk Schreiber; Arnau Montagud; Miguel Ponce de Leon; Akira Funahashi; Yusuke Hiki; Noriko Hiroi; Takahiro G Yamada; Andreas Drager; Alina Renz; Muhammad Naveez; Zsolt Bocskei; Daniela Bornigen; Liam Fergusson; Marta Conti; Marius Rameil; Vanessa Nakonecnij; Jakob Vanhoefer; Leonard Schmiester; Muying Wang; Emily E Ackerman; Jason E Shoemaker; Jeremy Zucker; Kristie L Oxford; Jeremy Teuton; Ebru Kocakaya; Gokce Yagmur Summak; Kristina Hanspers; Martina Kutmon; Susan Coort; Lars Eijssen; Friederike Ehrhart; Rex D. A. B.; Denise Slenter; Marvin Martens; Nhung Pham; Robin Haw; Bijay Jassal; Lisa Matthews; Marija Orlic-Milacic; Andrea Senff-Ribeiro; Karen Rothfels; Veronica Shamovsky; Ralf Stephan; Cristoffer Sevilla; Thawfeek Mohamed Varusai; Jean-Marie Ravel; Vera Ortseifen; Silvia Marchesi; Piotr Gawron; Ewa Smula; Laurent Heirendt; Venkata Satagopam; Guanming Wu; Anders Riutta; Martin Golebiewski; Stuart Owen; Carole Goble; Xiaoming Hu; Rupert Overall; Dieter Maier; Angela Bauch; Benjamin M Gyori; John A Bachman; Carlos Vega; Valentin Groues; Miguel Vazquez; Pablo Porras; Luana Licata; Marta Iannuccelli; Francesca Sacco; Denes Turei; Augustin Luna; Ozgun Babur; Sylvain Soliman; Alberto Valdeolivas; Marina Esteban-Medina; Maria Pena-Chilet; Kinza Rian; Tomas Helikar; Bhanwar Lal Puniya; Anastasia Nesterova; Anton Yuryev; Anita de Waard; Dezso Modos; Agatha Treveil; Marton Laszlo Olbei; Bertrand De Meulder; Aurelien Naldi; Aurelien Dugourd; Laurence Calzone; Chris Sander; Emek Demir; Tamas Korcsmaros; Tom C Freeman; Franck Auge; Jacques S Beckmann; Jan Hasenauer; Olaf Wolkenhauer; Egon Willighagen; Alexander R Pico; Chris Evelo; Lincoln D Stein; Henning Hermjakob; Julio Saez-Rodriguez; Joaquin Dopazo; Alfonso Valencia; Hiroaki Kitano; Emmanuel Barillot; Charles Auffray; Rudi Balling; Reinhard Schneider; - the COVID-19 Disease Map Community.
Preprint in English | bioRxiv | ID: ppbiorxiv-356014

ABSTRACT

We describe a large-scale community effort to build an open-access, interoperable, and computable repository of COVID-19 molecular mechanisms - the COVID-19 Disease Map. We discuss the tools, platforms, and guidelines necessary for the distributed development of its contents by a multi-faceted community of biocurators, domain experts, bioinformaticians, and computational biologists. We highlight the role of relevant databases and text mining approaches in enrichment and validation of the curated mechanisms. We describe the contents of the Map and their relevance to the molecular pathophysiology of COVID-19 and the analytical and computational modelling approaches that can be applied for mechanistic data interpretation and predictions. We conclude by demonstrating concrete applications of our work through several use cases and highlight new testable hypotheses.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20187369

ABSTRACT

The pandemic spread of the potentially life-threatening disease COVID-19 requires a thorough understanding of the longitudinal dynamics of host responses. Temporal resolution of cellular features associated with a severe disease trajectory will be a pre-requisite for finding disease outcome predictors. Here, we performed a longitudinal multi-omics study using a two-centre German cohort of 13 patients (from Cologne and Kiel, cohort 1). We analysed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. The results from single-cell and bulk transcriptome analyses were validated in two independent cohorts of COVID-19 patients from Bonn (18 patients, cohort 2) and Nijmegen (40 patients, cohort 3), respectively. We observed an increase of proliferating, activated plasmablasts in severe COVID-19, and show a distinct expression pattern related to a hyperactive cellular metabolism of these cells. We further identified a notable expansion of type I IFN-activated circulating megakaryocytes and their progenitors, indicative of emergency megakaryopoiesis, which was confirmed in cohort 2. These changes were accompanied by increased erythropoiesis in the critical phase of the disease with features of hypoxic signalling. Finally, projecting megakaryocyte- and erythroid cell-derived co-expression modules to longitudinal blood transcriptome samples from cohort 3 confirmed an association of early temporal changes of these features with fatal COVID-19 disease outcome. In sum, our longitudinal multi-omics study demonstrates distinct cellular and gene expression dynamics upon SARS-CoV-2 infection, which point to metabolic shifts of circulating immune cells, and reveals changes in megakaryocytes and increased erythropoiesis as important outcome indicators in severe COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...