Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 138: 112645, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972208

ABSTRACT

BACKGROUND: Pulmonary fibrosis is a progressive disease with high incidence and poor prognosis. It is urgent to explore new therapeutic methods for pulmonary fibrosis. As a new treatment method, gene therapy has attracted more and more attention. CCDC59 is a transcriptional coactivator of SP-B and SP-C. Our study mainly aims to explore the effect of overexpression of CCDC59 gene in pulmonary fibrosis of mice. METHODS: CCDC59 overexpressing lentivirus was constructed and then concentrated. RT-qPCR, Western blotting, and immunofluorescence assays were used to detect the expression of CCDC59, SP-B and SP-C protein in cell line and lung tissues after infected with lentivirus. Immunohistochemical staining and hematoxylin-eosin staining assays were used to assess the degree of fibrosis and ELISA assay was used to detect the concentrations of inflammatory factors, SP-B, and SP-C in bronchoalveolar lavage fluid of mice. Dynamic changes of mice lung function at various time points were assessed by lung function test assay. HIPPO pathway and proliferation capacity of alveolar type II epithelial cells were evaluated by immunofluorescence staining and Western blotting. RESULTS: Results showed that endotracheal instillation of CCDC59 overexpressed lentivirus significantly alleviated bleomycin-induced inflammation and pulmonary fibrosis in mice. Overexpression of CCDC59 protein in type II alveolar epithelial cells can enhance the expression of SP-B and SP-C. Overexpression of CCDC59 protein significantly protected against pulmonary inflammatory response and improved lung function of mice. Overexpression of CCDC59 protein significantly alleviated the hyperactivation of HIPPO pathway and increased the proliferative capacity of type II alveolar epithelial cells in lung. CONCLUSION: CCDC59 can alleviate inflammation and pulmonary fibrosis in mice by upregulating the expression of SP-B and SP-C in type II alveolar epithelial cells and alleviating the hyperactivation of HIPPO pathway. Our study offers a new potential treatment for pulmonary fibrosis.

2.
Methods Appl Fluoresc ; 12(3)2024 May 31.
Article in English | MEDLINE | ID: mdl-38697201

ABSTRACT

Fluorescence spectroscopy serves as a vital technique for studying the interaction between light and fluorescent molecules. It encompasses a range of methods, each presenting unique advantages and applications. This technique finds utility in various chemical studies. This review discusses Fluorescence spectroscopy, its branches such as Time-Resolved Fluorescence Spectroscopy (TRFS) and Fluorescence Lifetime Imaging Microscopy (FLIM), and their integration with other spectroscopic methods, including Raman, Infrared (IR), and Circular Dichroism (CD) spectroscopies. By delving into these methods, we aim to provide a comprehensive understanding of the capabilities and significance of fluorescence spectroscopy in scientific research, highlighting its diverse applications and the enhanced understanding it brings when combined with other spectroscopic methods. This review looks at each technique's unique features and applications. It discusses the prospects of their combined use in advancing scientific understanding and applications across various domains.


Subject(s)
Spectrometry, Fluorescence , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Spectrometry, Fluorescence/methods , Circular Dichroism/methods , Spectrophotometry, Infrared/methods , Humans
3.
Inflammation ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598115

ABSTRACT

Particulate matter (PM) induces and enhances oxidative stress and inflammation, leading to a variety of respiratory diseases, including acute lung injury. Exploring new treatments for PM-induced lung injury has long been of interest to researchers. Palmatine (PAL) is a natural extract derived from plants that has been reported in many studies to alleviate inflammatory diseases. Our study was designed to explore whether PAL can alleviate acute lung injury caused by PM. The acute lung injury model was established by instilling PM (4 mg/kg) into the airway of mice, and PAL (50 mg/kg and 100 m/kg) was administrated orally as the treatment groups. The effect and mechanism of PAL treatment were examined by immunofluorescence, immunohistochemistry, Western Blotting, ELISA, and other experiments. The results showed that oral administration of PAL (50 mg/kg and 100 m/kg) could significantly alleviate lung inflammation and acute lung injury caused by PM. In terms of mechanism, we found that PAL (50 mg/kg) exerts anti-inflammatory and anti-damage effects mainly by enhancing the activation of the Nrf2-related antioxidant pathway and inhibiting the activation of the NLRP3-related pyroptosis pathway in mice. These mechanisms have also been verified in our cell experiments. Further cell experiments showed that PAL may reduce intracellular reactive oxygen species (ROS) by activating Nrf2-related pathways, thereby inhibiting the activation of NLRP3-related pyroptosis pathway induced by PM in Beas-2B cell. Our study suggests that PAL can be a new option for PM-induced acute lung injury.

4.
Respir Res ; 25(1): 67, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317146

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a leading aging related cause of global mortality. Small airway narrowing is recognized as an early and significant factor for COPD development. Senescent fibroblasts were observed to accumulate in lung of COPD patients and promote COPD progression through aberrant extracellular matrix (ECM) deposition and senescence-associated secretory phenotype (SASP). On the basis of our previous study, we further investigated the the causes for the increased levels of miR-377-3p in the blood of COPD patients, as well as its regulatory function in the pathological progression of COPD. We found that the majority of up-regulated miR-377-3p was localized in lung fibroblasts. Inhibition of miR-377-3p improved chronic smoking-induced COPD in mice. Mechanistically, miR-377-3p promoted senescence of lung fibroblasts, while knockdown of miR-377-3p attenuated bleomycin-induced senescence in lung fibroblasts. We also identified ZFP36L1 as a direct target for miR-377-3p that likely mediated its pro senescence activity in lung fibroblasts. Our data reveal that miR-377-3p is crucial for COPD pathogenesis, and may serve as a potential target for COPD therapy.


Subject(s)
Butyrate Response Factor 1 , MicroRNAs , Pulmonary Disease, Chronic Obstructive , Animals , Humans , Mice , Aging , Butyrate Response Factor 1/metabolism , Cellular Senescence/genetics , Fibroblasts/metabolism , Lung/metabolism , MicroRNAs/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism
5.
J Cancer Res Clin Oncol ; 149(12): 9557-9575, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37222810

ABSTRACT

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas technology is a molecular tool specific to sequences for engineering genomes. Among diverse clusters of Cas proteins, the class 2/type II CRISPR/Cas9 system, despite several challenges, such as off-target effects, editing efficiency, and efficient delivery, has shown great promise for driver gene mutation discovery, high-throughput gene screening, epigenetic modulation, nucleic acid detection, disease modeling, and more importantly for therapeutic purposes. CRISPR-based clinical and experimental methods have applications across a wide range of areas, especially for cancer research and, possibly, anticancer therapy. On the other hand, given the influential role of microRNAs (miRNAs) in the regulations of cellular division, carcinogenicity, tumorigenesis, migration/invasion, and angiogenesis in diverse normal and pathogenic cellular processes, in different stages of cancer, miRNAs are either oncogenes or tumor suppressors, according to what type of cancer they are involved in. Hence, these noncoding RNA molecules are conceivable biomarkers for diagnosis and therapeutic targets. Moreover, they are suggested to be adequate predictors for cancer prediction. Conclusive evidence proves that CRISPR/Cas system can be applied to target small non-coding RNAs. However, the majority of studies have highlighted the application of the CRISPR/Cas system for targeting protein-coding regions. In this review, we specifically discuss diverse applications of CRISPR-based tools for probing miRNA gene function and miRNA-based therapeutic involvement in different types of cancers.


Subject(s)
MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , CRISPR-Cas Systems/genetics , Gene Editing/methods , RNA, Untranslated , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy
6.
J Neurochem ; 163(1): 8-25, 2022 10.
Article in English | MEDLINE | ID: mdl-35839294

ABSTRACT

Dysregulation of insulin signaling in the Alzheimer's disease (AD) brain has been extensively reported. Serine racemase (SR) modulates insulin secretion in pancreatic islets. This study aimed to examine whether SR regulates insulin synthesis and secretion in neurons, thereby modulating insulin signaling in the AD brain. Srr-knockout (Srr-/- ) mice generated with the CRISPR/Cas9 technique were used. Using immunofluorescence and fluorescence in situ hybridization, levels of insulin protein and insulin(ins2) mRNA were significantly increased in the hippocampal but not in hypothalamic sections of Srr-/- mice compared with WT mice. Real-time quantitative PCR revealed that ins2 mRNA from primary hippocampal neuronal cultures of Srr-/- mice was significantly increased compared with that from cultured neurons of WT mice. Notably, the secretion of proinsulin C-peptide was increased in Srr-/- neurons relative to WT neurons. By examining membrane fractional proteins with immunoblotting, Srr-/- neurons retained ATP-dependent potassium channels on plasmalemma and correspondingly contained higher levels of p-AMPK. After treatment with Aß42, the phosphorylation levels of insulin receptor substrate at serine 616 636 (p-IRS1ser616,636 ) were significantly lower, whereas p-AKT308 and p-AKT473 were higher in Srr-/- neurons than in WT neurons, respectively. The phosphorylated form of c-Jun N-terminal kinase decreased in the cultured Srr-/- neurons relative to the WT neurons upon Aß42 treatment. In contrast, phosphorylated protein kinase R remained at the same levels. Further, reactive oxygen species were reduced in cultured Srr-/- neurons under Aß42 treatment relative to the WT neurons. Collectively, our study indicated that Srr deletion promoted insulin synthesis and secretion of proinsulin C-peptide, thereby reversing insulin resistance by Aß42. This study suggests that targeting the neuronal SR may be utilized to enhance insulin signaling which is inhibited at the early stage of the AD brain.


Subject(s)
Alzheimer Disease , Insulin , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , C-Peptide/genetics , C-Peptide/metabolism , In Situ Hybridization, Fluorescence , Insulin/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Mice , Potassium Channels/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger , Racemases and Epimerases , Reactive Oxygen Species/metabolism , Receptor, Insulin/metabolism , Serine/metabolism
7.
Front Pharmacol ; 11: 426, 2020.
Article in English | MEDLINE | ID: mdl-32322205

ABSTRACT

Ischemia-reperfusion injury (IRI), which is triggered by a transient reduction or cessation of blood flow followed by reperfusion, is a significant cause of acute kidney injury (AKI). IRI can lead to acute cell death, tissue injury, and even permanent organ dysfunction. In the clinic, IRI contributes to a higher morbidity and mortality and is associated with an unfavorable prognosis in AKI patients. Unfortunately, effective clinical drugs to protect patients against the imminent risk of renal IRI or treat already existing AKI are still lacking. Fibroblast growth factors (FGFs) are important regulators of key biological and pathological processes, such as embryonic development, metabolic homeostasis and tumorigenesis through the regulation of cell differentiation, migration, proliferation and survival. Accumulating evidence suggests that altered expression of endogenous FGFs is associated with IRI and could be instrumental in mediating the repair process. Therefore, FGFs have been proposed as potential biomarkers in the clinic. More importantly, exogenous FGF ligands have been reported to protect against renal IRI and display promising features for therapy. In this review, we summarize the evidence and mechanisms of AKI following IRI with a focus on the therapeutic capacity of several members of the FGF family to treat AKI after IRI.

8.
J Invertebr Pathol ; 136: 10-22, 2016 05.
Article in English | MEDLINE | ID: mdl-26880158

ABSTRACT

The world production of shrimp such as the Malaysian giant freshwater prawn, Macrobrachium rosenbergii is seriously affected by the white spot syndrome virus (WSSV). There is an urgent need to understand the host pathogen interaction between M. rosenbergii and WSSV which will be able to provide a solution in controlling the spread of this infectious disease and lastly save the aquaculture industry. Now, using Next Generation Sequencing (NGS), we will be able to capture the response of the M. rosenbergii to the pathogen and have a better understanding of the host defence mechanism. Two cDNA libraries, one of WSSV-challenged M. rosenbergii and a normal control one, were sequenced using the Illumina HiSeq™ 2000 platform. After de novo assembly and clustering of the unigenes from both libraries, 63,584 standard unigenes were generated with a mean size of 698bp and an N50 of 1137bp. We successfully annotated 35.31% of all unigenes by using BLASTX program (E-value <10-5) against NCBI non-redundant (Nr), Swiss-Prot, Kyoto Encyclopedia of Genes and Genome pathway (KEGG) and Orthologous Groups of proteins (COG) databases. Gene Ontology (GO) assessment was conducted using BLAST2GO software. Differentially expressed genes (DEGs) by using the FPKM method showed 8443 host genes were significantly up-regulated whereas 5973 genes were significantly down-regulated. The differentially expressed immune related genes were grouped into 15 animal immune functions. The present study showed that WSSV infection has a significant impact on the transcriptome profile of M. rosenbergii's hepatopancreas, and further enhanced the knowledge of this host-virus interaction. Furthermore, the high number of transcripts generated in this study will provide a platform for future genomic research on freshwater prawns.


Subject(s)
DNA Virus Infections/veterinary , Hepatopancreas/immunology , Palaemonidae/virology , White spot syndrome virus 1 , Animals , DNA Virus Infections/genetics , DNA Virus Infections/immunology , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Palaemonidae/genetics , Palaemonidae/immunology , Phylogeny , Real-Time Polymerase Chain Reaction , Transcriptome
9.
Gut Pathog ; 7: 6, 2015.
Article in English | MEDLINE | ID: mdl-25922623

ABSTRACT

BACKGROUND: The Malaysian giant freshwater prawn, Macrobrachium rosenbergii, is an economically important crustacean worldwide. However, production of this prawn is facing a serious threat from Vibriosis disease caused by Vibrio species such as Vibrio parahaemolyticus. Unfortunately, the mechanisms involved in the immune response of this species to bacterial infection are not fully understood. We therefore used a high-throughput deep sequencing technology to investigate the transcriptome and comparative expression profiles of the hepatopancreas from this freshwater prawn infected with V. parahaemolyticus to gain an increased understanding of the molecular mechanisms underlying the species' immune response to this pathogenic bacteria. RESULT: A total of 59,122,940 raw reads were obtained from the control group, and 58,385,094 reads from the Vibrio-infected group. Via de novo assembly by Trinity assembler, 59,050 control unigenes and 73,946 Vibrio-infected group unigenes were obtained. By clustering unigenes from both libraries, a total of 64,411 standard unigenes were produced. The standard unigenes were annotated against the NCBI non-redundant, Swiss-Prot, Kyoto Encyclopaedia of Genes and Genome pathway (KEGG) and Orthologous Groups of Proteins (COG) databases, with 19,799 (30.73%), 16,832 (26.13%), 14,706 (22.83%) and 7,856 (12.19%) hits respectively, giving a final total of 22,455 significant hits (34.86% of all unigenes). A Gene Ontology (GO) analysis search using the Blast2GO program resulted in 6,007 unigenes (9.32%) being categorized into 55 functional groups. A differential gene expression analysis produced a total of 14,569 unigenes aberrantly expressed, with 11,446 unigenes significantly up-regulated and 3,103 unigenes significantly down-regulated. The differentially expressed immune genes fall under various processes of the animal immune system. CONCLUSION: This study provided an insight into the antibacterial mechanism in M. rosenbergii and the role of differentially expressed immune genes in response to V. parahaemolyticus infection. Furthermore, this study has generated an abundant list of transcript from M.rosenbergii which will provide a fundamental basis for future genomics research in this field.

SELECTION OF CITATIONS
SEARCH DETAIL
...