Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Front Cell Infect Microbiol ; 14: 1398077, 2024.
Article in English | MEDLINE | ID: mdl-38836056

ABSTRACT

Mycobacterium tuberculosis (M.tb), the causative agent of Tuberculosis, is an intracellular bacterium well known for its ability to subvert host energy and metabolic pathways to maintain its intracellular survival. For this purpose, the bacteria utilize various mechanisms of which extracellular vehicles (EVs) related mechanisms attracted more attention. EVs are nanosized particles that are released by almost all cell types containing active biomolecules from the cell of origin and can target bioactive pathways in the recipient cells upon uptake. It is hypothesized that M.tb dictates the processes of host EV biogenesis pathways, selectively incorporating its molecules into the host EV to direct immune responses in its favor. During infection with Mtb, both mycobacteria and host cells release EVs. The composition of these EVs varies over time, influenced by the physiological and nutritional state of the host environment. Additionally, different EV populations contribute differently to the pathogenesis of disease at various stages of illness participating in a complex interplay between host cells and pathogens. These interactions ultimately influence immune responses and disease outcomes. However, the precise mechanisms and roles of EVs in pathogenicity and disease outcomes remain to be fully elucidated. In this review, we explored the properties and function of EVs in the context of M.tb infection within the host microenvironment and discussed their capacity as a novel therapeutic strategy to combat tuberculosis.


Subject(s)
Extracellular Vesicles , Host-Pathogen Interactions , Mycobacterium tuberculosis , Tuberculosis , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Mycobacterium tuberculosis/immunology , Humans , Tuberculosis/immunology , Tuberculosis/microbiology , Tuberculosis/metabolism , Host-Pathogen Interactions/immunology , Animals
3.
Cells ; 12(7)2023 03 28.
Article in English | MEDLINE | ID: mdl-37048103

ABSTRACT

Multiple myeloma (MM) is a malignancy of plasma cells in the bone marrow and is characterized by the clonal proliferation of B-cells producing defective monoclonal immunoglobulins. Despite the latest developments in treatment, drug resistance remains one of the major challenges in the therapy of MM. The crosstalk between MM cells and other components within the bone marrow microenvironment (BME) is the major determinant of disease phenotypes. Exosomes have emerged as the critical drivers of this crosstalk by allowing the delivery of informational cargo comprising multiple components from miniature peptides to nucleic acids. Such material transfers have now been shown to perpetuate drug-resistance development and disease progression in MM. MicroRNAs(miRNAs) specifically play a crucial role in this communication considering their small size that allows them to be readily packed within the exosomes and widespread potency that impacts the developmental trajectory of the disease inside the tumor microenvironment (TME). In this review, we aim to provide an overview of the current understanding of the role of exosomal miRNAs in the epigenetic modifications inside the TME and its pathogenic influence on the developmental phenotypes and prognosis of MM.


Subject(s)
MicroRNAs , Multiple Myeloma , Humans , MicroRNAs/genetics , MicroRNAs/therapeutic use , Multiple Myeloma/drug therapy , Tumor Microenvironment , Bone Marrow/pathology , Plasma Cells
4.
Tanaffos ; 21(1): 15-23, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36258913

ABSTRACT

Background: Globally, lung cancer represents a major cause of cancer-related deaths. The regulation of gene expression is modulated by small noncoding RNAs called miRNAs that can act as both tumor suppressors and oncogenes. The maturation, expression and binding to target mRNAs is affected by single nucleotide polymorphisms (SNPs) in miRNA genomic regions thereby contributing to cancer susceptibility. SNPs Rs11614913 in miR196a and Rs3746444 in miR-499 are implicated in the development of cancers such as non-small cell lung cancer (NSCLC) in non-Arabic subjects. Materials and Methods: A small cohort of 204 participants including 104 lung cancer patients and 100 non-cancer controls subjects were enrolled into the study. The allele frequencies were determined by Polymerase Chain Reaction- Restriction Fragment Length Polymorphism (PCR-RFLP) and their correlation with lung cancer risk was determined. Results: The miR-196a rs11614913 polymorphism increased the risk of NSCLC (CC vs. TT+TC: OR= 2.26, 95%CI= 1.28 - 3.98, P= 0.0046) in a dominant genetic model. No statistically significant association was found between the miR-499 rs37464444 polymorphism and NSCLC. Conclusion: The rs11614913 polymorphism in miR-196a, but not the miR-499 rs37464444 polymorphism, increased the risk of NSCLC. Further studies with larger sample sizes in correlation with functional outcomes at the cellular level should be undertaken.

5.
Mol Biol Rep ; 49(11): 10715-10727, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35754059

ABSTRACT

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) is known as the major viral entry site for SARS-CoV-2. However, viral tissue tropism and high rate of infectivity do not directly correspond with the level of ACE2 expression in the organs. It may suggest involvement of other receptors or accessory membrane proteins in SARSCoV-2 cell entry. METHODS AND RESULTS: A systematic search was carried out in PubMed/Medline, EMBASE, and Cochrane Library for studies reporting SARS-CoV-2 cell entry. We used a group of the MeSH terms including "cell entry", "surface receptor", "ACE2", and "SARS-CoV-2". We reviewed all selected papers published in English up to end of February 2022. We found several receptors or auxiliary membrane proteins (including CD147, NRP-1, CD26, AGTR2, Band3, KREMEN1, ASGR1, ANP, TMEM30A, CLEC4G, and LDLRAD3) along with ACE2 that facilitate virus entry and transmission. Expression of Band3 protein on the surface of erythrocytes and evidence of binding with S protein of SARS-CoV-2 may explain asymptomatic hypoxemia during COVID19 infection. The variants of SARS-CoV-2 including the B.1.1.7 (Alpha), B.1.617.1 (Kappa), B.1.617.2 (Delta), B.1.617.2+ (Delta+), and B.1.1.529 (Omicron) may have different potency to bond with these receptors. CONCLUSIONS: The high rate of infectivity of SARS-CoV-2 may be due to its ability to enter the host cell through a group of cell surface receptors. These receptors are potential targets to develop novel therapeutic agents for SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Asialoglycoprotein Receptor/metabolism , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
6.
Front Oncol ; 11: 715677, 2021.
Article in English | MEDLINE | ID: mdl-34790566

ABSTRACT

BACKGROUND: Non-small-cell lung cancer (NSCLC) is the major type of lung cancer. MicroRNAs (miRNAs) are novel markers and targets in cancer therapy and can act as both tumor suppressors and oncogenes and affect immune function. The aim of this study was to investigate the expression of miR146a and miR155 in linked to blood immune cell phenotypes and serum cytokines in NSCLC patients. METHODS: Thirty-three NSCLC patients and 30 healthy subjects were enrolled in this study. The allele frequencies of potential DNA polymorphisms were studied using polymerase chain reaction (PCR)-restriction fragment length polymorphism (PCR-RFLP) analysis in peripheral blood samples. Quantitative reverse transcription PCR (qRT-PCR) was used to measure the expression of miR-146a and miR-155 in peripheral blood mononuclear cells (PBMCs). Serum cytokine (IL-1ß, IL-6, TNF-α, TGF-ß, IL-4, IFN-γ) levels were determined by ELISA. The frequency of circulating CD3+CTLA-4+ and CD4+CD25+FOXP3+ (T regulatory cells/Treg) expression was measured by flow cytometry. RESULTS: miR-146a was significantly downregulated in PBMC of NSCLC patients (P ≤ 0.001). Moreover, IL-6 and TGF-ß levels were elevated in NSCLC patients (P ≤ 0.001, P ≤ 0.018, respectively). CD3+ CTLA-4+ and Treg cells frequencies were higher in patients than in control subjects (P ≤ 0.0001, P ≤ 0.0001, respectively). There was a positive correlation between miR-155 and IL-1ß levels (r=0.567, p ≤ 0.001) and a negative correlation between miR-146a and TGF-ß levels (r=-0.376, P ≤ 0.031) in NSCLC patients. No significant differences were found in the relative expression of miR-146a and miR-155, cytokine levels or immune cell numbers according to miR-146a and miR-155 (GG/GC/CC, TT/AT/AA) genotypes. However, there was a positive correlation between miR-146a and IL-1ß levels (r=0.74, P ≤ 0.009) in GG subjects and a positive correlation between miR-146a expression and CD3+CTLA4+ cell frequency (r=0.79, P ≤ 0.01) in CC genotyped subjects. Conversely, a negative correlation between miR-146a expression and Treg cell frequency (r=-0.87, P ≤ 0.05) was observed with the GG genotype. A positive correlation between miR-155 and IL-1ß expression (r=0.58, p ≤ 0.009) in the TT genotype and between miR-155 expression and CD3+CTLA-4 cell frequency (r=0.75, P ≤ 0.01) was observed in the AT genotype. CONCLUSIONS: The current data suggest that the miR-146a expression in PBMC and serum TGF-ß and IL-1ß levels may act as blood markers in NSCLC patients. Further study is needed to elucidate the link between immune cells and serum miR146 at early disease stages.

7.
Front Neurol ; 12: 697079, 2021.
Article in English | MEDLINE | ID: mdl-34393976

ABSTRACT

The new coronavirus disease COVID-19 was identified in December 2019. It subsequently spread across the world with over 125 M reported cases and 2.75 M deaths in 190 countries. COVID-19 causes severe respiratory distress; however, recent studies have reported neurological consequences of infection by the COVID-19 virus SARS-CoV-2 even in subjects with mild infection and no initial neurological effects. It is likely that the virus uses the olfactory nerve to reach the CNS and that this transport mechanism enables virus access to areas of the brain stem that regulates respiratory rhythm and may even trigger cell death by alteration of these neuronal nuclei. In addition, the long-term neuronal effects of COVID-19 suggest a role for SARS-CoV-2 in the development or progression of neurodegerative disease as a result of inflammation and/or hypercoagulation. In this review recent findings on the mechanism(s) by which SARS-CoV-2 accesses the CNS and induces neurological dysregulation are summarized.

8.
Cells ; 10(8)2021 08 09.
Article in English | MEDLINE | ID: mdl-34440800

ABSTRACT

The innate immune system plays a critical role in the early detection of pathogens, primarily by relying on pattern-recognition receptor (PRR) signaling molecules. Nucleotide-binding oligomerization domain 2 (NOD2) is a cytoplasmic receptor that recognizes invading molecules and danger signals inside the cells. Recent studies highlight the importance of NOD2's function in maintaining the homeostasis of human body microbiota and innate immune responses, including induction of proinflammatory cytokines, regulation of autophagy, modulation of endoplasmic reticulum (ER) stress, etc. In addition, there is extensive cross-talk between NOD2 and the Toll-like receptors that are so important in the induction and tuning of adaptive immunity. Polymorphisms of NOD2's encoding gene are associated with several pathological conditions, highlighting NOD2's functional importance. In this study, we summarize NOD2's role in cellular signaling pathways and take a look at the possible consequences of common NOD2 polymorphisms on the structure and function of this receptor.


Subject(s)
Autophagy/genetics , Endoplasmic Reticulum Stress/genetics , Nod2 Signaling Adaptor Protein/genetics , Polymorphism, Genetic , Signal Transduction/genetics , Adaptive Immunity/genetics , Humans , Immunity, Innate/genetics , Nod2 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/metabolism , Protein Domains , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
9.
Front Nutr ; 8: 698617, 2021.
Article in English | MEDLINE | ID: mdl-34291074

ABSTRACT

Background: During late 2019 a viral disease due to a novel coronavirus was reported in Wuhan, China, which rapidly developed into an exploding pandemic and poses a severe threat to human health all over the world. Until now (May 2021), there are insufficient treatment options for the management of this global disease and shortage of vaccines. Important aspects that help to defeat coronavirus infection seems to be having a healthy, strong, and resilient immune system. Nutrition and metabolic disorders, such as obesity and diabetes play a crucial role on the community health situation in general and especially during this new pandemic. There seems to be an enormous impact of lifestyle, metabolic disorders, and immune status on coronavirus disease 2019 (COVID-19) severity and recovery. For this reason, it is important to consider the impact of lifestyle and the consumption of well-defined healthy diets during the pandemic. Aims: In this review, we summarise recent findings on the effect of nutrition on COVID-19 susceptibility and disease severity and treatment. Understanding how specific dietary features might help to improve the public health strategies to reduce the rate and severity of COVID-19.

10.
Front Cell Infect Microbiol ; 11: 563085, 2021.
Article in English | MEDLINE | ID: mdl-33643932

ABSTRACT

In late December 2019, a vtiral pneumonia with an unknown agent was reported in Wuhan, China. A novel coronavirus was identified as the causative agent. Because of the human-to-human transmission and rapid spread; coronavirus disease 2019 (COVID-19) has rapidly increased to an epidemic scale and poses a severe threat to human health; it has been declared a public health emergency of international concern (PHEIC) by the World Health Organization (WHO). This review aims to summarize the recent research progress of COVID-19 molecular features and immunopathogenesis to provide a reference for further research in prevention and treatment of SARS coronavirus2 (SARS-CoV-2) infection based on the knowledge from researches on SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV).


Subject(s)
COVID-19/metabolism , COVID-19/virology , SARS-CoV-2/pathogenicity , Adaptive Immunity , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , Cytokines/immunology , Cytokines/metabolism , Humans , Immunity, Innate , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
11.
Can Respir J ; 2020: 8179415, 2020.
Article in English | MEDLINE | ID: mdl-33294082

ABSTRACT

Background: Lung cancer is one of the leading causes of death worldwide. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression and may act as both tumor suppressors and as oncogenes. The presence of single nucleotide polymorphisms (SNPs) inside the miRNA genomic region could affect target miRNA maturation, expression, and binding to its target mRNA and contribute to cancer development. Previous studies on the SNPs Rs2910164 in miR-146a and Rs767649 in miR-155 showed association with non-small cell lung cancer (NSCLC) development. Thus, the aim of this study was to detect any correlation between those SNPs in Iranian NSCLC patients. Methods: In a small cohort study, 165 NSCLC patients and 147 noncancer controls were enrolled between Apr 2015 and Sep 2019 at the Masih Daneshvari Hospital, Tehran, Iran. Allele frequencies from the genomic DNA of blood cells were studied using PCR-RFLP and their association with the risk of lung cancer was evaluated. Results: The rs2910164C allele (OR = 1.56, 95% CI = 1.10-2.21, p = 0.012) and CC genotype (OR = 2.93, 95% CI = 1.07-7.9, p = 0.034, respectively) were associated with a significantly increased risk for lung cancer compared to that for the GG genotype. When patients were stratified according to smoking exposure, no association with rs2910164 variants was found. The AT genotype (OR = 0.57, 95% CI = 0.33-0.99, p = 0.048) and the A allele frequency (OR = 0.58, 95% CI = 0.35-0.98, p = 0.043) in rs767649 were lower in NSCLC patients in comparison with the control group. In addition, the rs767649 AT genotype frequency in smoking controls was higher than in smoking NSCLC patients (OR = 0.44, 95% CI = 0.21-0.90, p = 0.024). No association was found between rs2910164 and rs767649 variants and stage or type of NSCLC. Conclusion: Our finding suggests that miR-146a rs2910164 and miR-155 rs767649 polymorphisms may be considered as genetic risk factors for the susceptibility to NSCLC in the Iranian population. However, a larger multicenter study across Iran is needed to confirm these findings.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Carcinoma, Non-Small-Cell Lung/genetics , Case-Control Studies , Cohort Studies , Genetic Predisposition to Disease , Humans , Iran , Lung Neoplasms/genetics , MicroRNAs/genetics , Polymorphism, Single Nucleotide , Risk Factors
12.
Tanaffos ; 19(2): 79-82, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33262791
13.
Eur J Pharmacol ; 886: 173529, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-32919937

ABSTRACT

Tuberculosis (TB) is one of the most lethal global infectious diseases. Despite the availability of much higher levels of technology in health and medicine, tuberculosis still remains a serious global health problem. Mycobacterium tuberculosis has the capacity for prolonged survival inside macrophages by exploiting host metabolic and energy pathways and perturbing autophagy and apoptosis of infected cells. The mechanism(s) underlying this process are not completely understood but evidence suggests that mycobacteria subvert the host miRNA network to enable mycobacterial survival. We present here a comprehensive review on the role of miRNAs in TB immune escape mechanisms and the potential for miRNA-based TB therapeutics. Further validation studies are required to (i) elucidate the precise effect of TB on host miRNAs, (ii) determine the inhibition of mycobacterial burden using miRNA-based therapies and (iii) identify novel miRNA biomarkers that may prove useful in TB diagnosis and treatment monitoring.


Subject(s)
MicroRNAs/genetics , MicroRNAs/metabolism , Tuberculosis/genetics , Tuberculosis/metabolism , Animals , Humans , MicroRNAs/biosynthesis , Mycobacterium tuberculosis , Tuberculosis/microbiology
14.
BMC Pulm Med ; 20(1): 250, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32962698

ABSTRACT

An amendment to this paper has been published and can be accessed via the original article.

15.
Int J Mycobacteriol ; 8(3): 218-222, 2019.
Article in English | MEDLINE | ID: mdl-31512596

ABSTRACT

Background: Tuberculosis (TB) still remains a major health threat worldwide. The current TB diagnostics are suboptimal, and there is a high clinical need for identifying novel biomarkers of disease prevalence. Circulating exosomes have been currently attractive as novel biomarkers in a wide range of pathological conditions. Methods: In this study, we performed bioinformatics analysis on the downstream targets of a dysregulated microRNA (miRNA) cluster induced by Bacillus Calmette-Guerin infection of human macrophages to provide greater understanding of their potential roles in disease pathogenesis. Results: Our analysis demonstrated that these dysregulated miRNAs have central roles in the host metabolic and energy pathways. Conclusion: This suggests that the host miRNA network is perturbed by Mycobacterium to re-patterning host metabolism machinery to favor its intracellular survival. The dysregulated miRNAs can be delivered to local and distal cells by exosomes and thereby modulate their function.


Subject(s)
Computational Biology , Exosomes , Macrophages/microbiology , MicroRNAs/genetics , Mycobacterium bovis , Biomarkers/analysis , Cells, Cultured , Gene Expression Profiling , Humans , Protein Interaction Maps
16.
Dis Markers ; 2019: 1907426, 2019.
Article in English | MEDLINE | ID: mdl-30886653

ABSTRACT

INTRODUCTION: Tuberculosis (TB) remains a major threat to human health. Due to the limited accuracy of the current TB diagnostic tests, it is critical to determine novel biomarkers for this disease. Circulating exosomes have been used as diagnostic biomarkers in various diseases. OBJECTIVE OF THE STUDY: In this pilot study, we examined the expression of miRNAs as biomarker candidates for the diagnosis of TB infection. METHODS: Serum-derived exosomes were isolated from TB patients and matched control subjects. The expression of miR-484, miR-425, and miR-96 was examined by RT-PCR methods. RESULTS: The expression of miR-484, miR-425, and miR-96 were significantly increased in serum of TB patients which correlated with the TB infection level. A receiver operating characteristic (ROC) curve analysis showed the diagnostic potency of each individual serum exosomal miRNA with an area under the curve (AUC) = 0.72 for miR-484 (p < 0.05), 0.66 for miR-425 (p < 0.05), and 0.62 for miR-96 (p < 0.05). CONCLUSION: These results demonstrate that exosomal miRNAs have diagnostic potential in active tuberculosis. The diagnostic power may be improved when combined with conventional diagnostic markers.


Subject(s)
Exosomes/metabolism , MicroRNAs/blood , Tuberculosis, Pulmonary/blood , Adolescent , Adult , Biomarkers/blood , Female , Humans , Male , Middle Aged
17.
Front Immunol ; 9: 2171, 2018.
Article in English | MEDLINE | ID: mdl-30356867

ABSTRACT

Neutrophils are main players in the effector phase of the host defense against micro-organisms and have a major role in the innate immune response. Neutrophils show phenotypic heterogeneity and functional flexibility, which highlight their importance in regulation of immune function. However, neutrophils can play a dual role and besides their antimicrobial function, deregulation of neutrophils and their hyperactivity can lead to tissue damage in severe inflammation or trauma. Neutrophils also have an important role in the modulation of the immune system in response to severe injury and trauma. In this review we will provide an overview of the current understanding of neutrophil subpopulations and their function during and post-infection and discuss the possible mechanisms of immune modulation by neutrophils in severe inflammation.


Subject(s)
Infections/immunology , Neutrophils/immunology , Wounds and Injuries/immunology , Animals , Humans , Infections/pathology , Inflammation/immunology , Inflammation/pathology , Neutrophils/pathology , Wounds and Injuries/pathology
18.
Dis Markers ; 2018: 2410451, 2018.
Article in English | MEDLINE | ID: mdl-29977411

ABSTRACT

INTRODUCTION: miRNAs contribute to a variety of essential biological processes including development, proliferation, differentiation, and apoptosis. Circulating microRNAs are very stable and have shown potential as biomarkers of cardiovascular disease. microRNA-208b expression was increased in the blood of patients with acute myocardial infarction (AMI) and has been proposed as a biomarker for early diagnosis. In this pilot study, we investigate the potential of circulating miR-208b as a prognostic biomarker of 6-month survival in AMI patients. METHODS: Plasma samples from 21 patients and 8 age- and gender-matched healthy adults were collected, and circulating levels of miR-208b were detected using quantitative real-time PCR. RESULTS: miR-208b levels were higher in healthy control subjects (9.6-fold; P ≤ 0.05). Within the AMI patients, the levels of miR-208b were significantly lower in the survivor versus nonsurvivor group (fold change = 6.51 and 14.1, resp.; P ≤ 0.05). The Kaplan-Meier curve revealed that the 6-month survival time was significantly higher among AMI patients with a relative expression of miR-208b lower than 12.38. The hazard ratio (HR) for the relative expression of miR-208b (<12.38 was the reference) was 5.08 (95% CI: 1.13-22.82; P = 0.03). CONCLUSION: Our results showed that elevated miR-208b expression was associated with reduced long-term survival in AMI patients. These pilot data indicate the need for a large follow-up study to confirm whether miR-208b can be used as a predictor of 6-month survival time after AMI.


Subject(s)
MicroRNAs/blood , Myocardial Infarction/genetics , Up-Regulation , Aged , Biomarkers/blood , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pilot Projects , Prognosis , Survival Analysis
19.
Biomed Res Int ; 2018: 2862187, 2018.
Article in English | MEDLINE | ID: mdl-29854739

ABSTRACT

Exosomes are nanosized vesicles and have recently been recognized as important players in cell-to-cell communication. Exosomes contain different mediators such as proteins, nucleic acids (DNA, mRNA, miRNAs, and other ncRNAs), and lipid mediators and can shuttle their exosomal content to both neighboring and distal cells. Exosomes are very effective in orchestrating immune responses in the airways and all cell types can contribute to the systemic exosome pool. Intracellular communication between the broad range of cell types within the lung is crucial in disease emphasizing the importance of exosomes. In asthma, exosomes affect the inflammatory microenvironment which ultimately determines the development or alleviation of the pathological symptoms. Recent studies in this area have provided insight into the underlying mechanisms of disease and led to interest in using exosomes as potential novel therapeutic agents.


Subject(s)
Asthma/pathology , Exosomes/pathology , Animals , Cell Communication/physiology , Cellular Microenvironment/physiology , Humans , Inflammation/pathology
20.
Iran J Allergy Asthma Immunol ; 17(3): 250-257, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29908542

ABSTRACT

Tuberculosis (TB) remains a major threat to human health. Understanding the strategies mycobacteria take to overcome immune defense is important in order to control the infection. Micro (mi)RNAs are master regulators of most pathways in the human body.  Infection with mycobacterium impacts upon the host metabolic pathways as they are subverted to obtain the nutrition for intracellular TB survival. In this study, we aimed to investigate the effect of Bacillus Calmette-Guérin (BCG) infection on the expression of three miRNAs (miR-1224, -484 and -425), which are important in infection and in the regulation of metabolic pathways. Peripheral blood monocyte-derived macrophage (MDM) cultures were prepared and infected with BCG at a multiplicity of infection (MOI)=10 or left uninfected as a control. 72h post-infection, RNA was extracted from the cultured cells and cDNA synthesis and real-time PCR performed. Expression levels miRNAs were normalized to the levels of U6 snRNA (Rnu6) using the 2-ΔΔCt method. Infection with BCG resulted in a highly significant increase in miR-1224 expression (24.4±3.8-fold induction) in human MDMs. The induction of miR-484 (1.8±0.3-fold increase) and of miR-425 (1.2±0.2-fold increase) was less increased compared to miR-1224. Mycobacterium tolerates a hostile microenvironment by escaping from lysosomal degradation and providing a lipid-rich niche by trigger with and re-pattering host metabolism. This study highlighted the potential roles of miRNAs in host responses upon mycobacterium infection.


Subject(s)
BCG Vaccine/immunology , Macrophages/immunology , MicroRNAs/genetics , Mycobacterium Infections/genetics , Mycobacterium bovis/physiology , Cells, Cultured , Humans , Macrophages/microbiology , Monocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...