Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(7): eaax3408, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32110723

ABSTRACT

The development of high-energy, high-power, multi-octave light transients is currently the subject of intense research driven by emerging applications in attosecond spectroscopy and coherent control. We report on a phase-stable, multi-octave source based on a Yb:YAG amplifier for light transient generation. We demonstrate the amplification of a two-octave spectrum to 25 µJ of energy in two broadband amplification channels and their temporal compression to 6 and 18 fs at 1 and 2 µm, respectively. In this scheme, due to the intrinsic temporal synchronization between the pump and seed pulses, the temporal jitter is restricted to long-term drift. We show that the intrinsic stability of the synthesizer allows subcycle detection of an electric field at 0.15 PHz. The complex electric field of the 0.15-PHz pulses and their free induction decay after interaction with water molecules are resolved by electro-optic sampling over 2 ps. The scheme is scalable in peak and average power.

2.
Appl Opt ; 56(17): 4990-4994, 2017 Jun 10.
Article in English | MEDLINE | ID: mdl-29047647

ABSTRACT

We report on a simple scheme to generate broadband, µJ pulses centered at 2.1 µm with an intrinsic carrier-envelope phase (CEP) stability from the output of a Yb:YAG regenerative amplifier delivering 1-ps pulses with randomly varying CEP. To the best of our knowledge, the reported system has the highest optical-to-optical efficiency for converting 1-ps, 1 µm pulses to CEP stable, broadband, 2.1 µm pulses. The generated coherent light carries an energy of 5.4 µJ, at 5 kHz repetition rate, that can be scaled to higher energy or power by using a suitable front end, if required. The system is ideally suited for seeding broadband parametric amplifiers and multichannel synthesizers pumped by picosecond Yb-doped amplifiers, obviating the need for active timing synchronization. Alternatively, this scheme can be combined with high-power oscillators with tens of µJ energy to generate CEP stable, multioctave supercontinua, suitable for field-resolved and time-resolved spectroscopy.

3.
Opt Lett ; 42(13): 2595-2598, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28957293

ABSTRACT

The generation of superoctave spectra from the interaction of intense ultrashort optical pulses and cubic nonlinearity is the result of interplay between the dispersion and nonlinearity of a material and various propagation effects. The cubic nonlinearity can be enhanced when it is combined with a quadratic-cascaded nonlinearity, relaxing the requirement on the laser's peak intensity for supercontinuum (SC) generation. In this Letter, we demonstrate and compare the generation of an SC driven from cubic and cascaded quadratic nonlinearities at an anomalous and zero dispersion wavelength (ZDW). We show the filament-free SC generation of femtosecond mid-infrared pulses by harvesting cascaded quadratic nonlinearity and, at ZDW, requires a lower threshold peak intensity and results in a higher power spectral density for the newly generated spectral components. The presented method is a suitable approach for generating multi-octave spectra from low peak-power, high average-power oscillators or a suitable seed for optical parametric amplifiers and multi-octave field synthesizers.

4.
J Vis Exp ; (125)2017 07 12.
Article in English | MEDLINE | ID: mdl-28745636

ABSTRACT

This is a report on a 100 W, 20 mJ, 1 ps Yb:YAG thin-disk regenerative amplifier. A homemade Yb:YAG thin-disk, Kerr-lens mode-locked oscillator with turn-key performance and microjoule-level pulse energy is used to seed the regenerative chirped-pulse amplifier. The amplifier is placed in airtight housing. It operates at room temperature and exhibits stable operation at a 5 kHz repetition rate, with a pulse-to-pulse stability less than 1%. By employing a 1.5 mm-thick beta barium borate crystal, the frequency of the laser output is doubled to 515 nm, with an average power of 70 W, which corresponds to an optical-to-optical efficiency of 70%. This superior performance makes the system an attractive pump source for optical parametric chirped-pulse amplifiers in the near-infrared and mid-infrared spectral range. Combining the turn-key performance and the superior stability of the regenerative amplifier, the system facilitates the generation of a broadband, CEP-stable seed. Providing the seed and pump of the optical parametric chirped-pulse amplification (OPCPA) from one laser source eliminates the demand of active temporal synchronization between these pulses. This work presents a detailed guide to set up and operate a Yb:YAG thin-disk regenerative amplifier, based on chirped-pulse amplification (CPA), as a pump source for an optical parametric chirped-pulse amplifier.


Subject(s)
Amplifiers, Electronic/standards , Equipment Design/standards , Oscillometry/methods
5.
Opt Lett ; 42(7): 1381-1384, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28362774

ABSTRACT

We report on a laser system based on thin-disk technology and chirped pulse amplification, providing output pulse energies of 200 mJ at a 5 kHz repetition rate. The amplifier contains a ring-type cavity and two thin Yb:YAG disks, each pumped by diode laser systems providing up to 3.5 kW power at a 969 nm wavelength. The average output power of more than 1 kW is delivered in an excellent output beam characterized by M2=1.1. The output pulses are compressed to 1.1 ps at full power with a pair of dielectric gratings.

6.
Opt Express ; 24(21): 24337-24346, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27828164

ABSTRACT

We report on the generation of a multi-octave, phase-stable continuum from the output of a Yb:YAG regenerative amplifier delivering 1-ps pulses with randomly varying carrier-envelope phase (CEP). The intrinsically CEP-stable spectral continuum spans from 450 nm to beyond 2500 nm, covering a spectral range of about 0.6 PHz. The generated coherent broadband light carries an energy of 4 µJ, which can be scaled to higher values if required. The system has been designed and is ideally suited for seeding broadband parametric amplifiers and multichannel synthesizers pumped by picosecond Yb:YAG amplifiers, obviating the need for active timing synchronization required in previous approaches. The presented concept paves the way to cost-effective, reliable all-Yb:YAG single-cycle sources with terawatt peak-power and tens-of-Watts average power.

7.
Opt Express ; 24(10): 10286-94, 2016 May 16.
Article in English | MEDLINE | ID: mdl-27409853

ABSTRACT

We demonstrate pulse shortening of 1-ps Yb:YAG thin-disk regenerative amplifier to 500 fs by cross-polarized wave generation (XPW) in a 6 mm BaF2 crystal. The process is self-compressed and has 8.5% conversion efficiency corresponding to 18 µJ energy. Our theoretical and experimental investigation shows that the factor of 3 spectral broadening and pulse shortening in ps-XPW-generation only happens in unsaturated regime. We demonstrate that the initial spectral chirp affects the spectral broadening and pulse shortening of XPW pulses.

8.
Opt Lett ; 41(6): 1126-9, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26977650

ABSTRACT

We report a 100 W, 20 mJ, 1-ps, all-Yb:YAG thin-disk regenerative amplifier seeded by a microjoule-level Yb:YAG thin-disk Kerr-lens mode-locked oscillator. The regenerative amplifier is implemented in a chirped pulse amplification system and operates at an ambient temperature in air, delivering ultrastable output pulses at a 5 kHz repetition rate and with a root mean square power noise value of less than 0.5%. Second harmonic generation of the amplifier's output in a 1.5 mm-thick BBO crystal results in more than 70 W at 515 nm, making the system an attractive source for pumping optical parametric chirped pulse amplifiers in the visible and near-infrared spectral ranges.

SELECTION OF CITATIONS
SEARCH DETAIL
...