Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Small ; 19(30): e2300150, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37058083

ABSTRACT

Direct removal of carbon dioxide (CO2 ) from the atmosphere, known as direct air capture (DAC) is attracting worldwide attention as a negative emission technology to control atmospheric CO2 concentrations. However, the energy-intensive nature of CO2 absorption-desorption processes has restricted deployment of DAC operations. Catalytic solvent regeneration is an effective solution to tackle this issue by accelerating CO2 desorption at lower regeneration temperatures. This work reports a one-step synthesis methodology to prepare monodispersed carbon nanospheres (MCSs) using trisodium citrate as a structure-directing agent with acidic sites. The assembly of citrate groups on the surface of MCSs enables consistent spherical growth morphology, reduces agglomeration and enhances water dispersibility. The functionalization-assisted synthesis produces uniform, hydrophilic nanospheres of 100-600 nm range. This work also demonstrates that the prepared MCSs can be further functionalized with strong Brønsted acid sites, providing high proton donation ability. Furthermore, the materials can be effectively used in a wide range of amino acid solutions to substantially accelerate CO2 desorption (25.6% for potassium glycinate and 41.1% for potassium lysinate) in the DAC process. Considering the facile synthesis of acidic MCSs and their superior catalytic efficiency, these findings are expected to pave a new path for energy-efficient DAC.

3.
Nat Commun ; 13(1): 1249, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273166

ABSTRACT

Catalytic solvent regeneration has attracted broad interest owing to its potential to reduce energy consumption in CO2 separation, enabling industry to achieve emission reduction targets of the Paris Climate Accord. Despite recent advances, the development of engineered acidic nanocatalysts with unique characteristics remains a challenge. Herein, we establish a strategy to tailor the physicochemical properties of metal-organic frameworks (MOFs) for the synthesis of water-dispersible core-shell nanocatalysts with ease of use. We demonstrate that functionalized nanoclusters (Fe3O4-COOH) effectively induce missing-linker deficiencies and fabricate mesoporosity during the self-assembly of MOFs. Superacid sites are created by introducing chelating sulfates on the uncoordinated metal clusters, providing high proton donation capability. The obtained nanomaterials drastically reduce the energy consumption of CO2 capture by 44.7% using only 0.1 wt.% nanocatalyst, which is a ∽10-fold improvement in efficiency compared to heterogeneous catalysts. This research represents a new avenue for the next generation of advanced nanomaterials in catalytic solvent regeneration.


Subject(s)
Metal-Organic Frameworks , Nanostructures , Carbon Dioxide/chemistry , Catalysis , Metal-Organic Frameworks/chemistry , Water
4.
J Environ Manage ; 307: 114478, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35093752

ABSTRACT

To predict CO2 adsorptive capture, as a vital environmental issue, using different zeolites including 5A, 13X, T-Type, SSZ-13, and SAPO-34, different models have been developed by implementing artificial intelligence algorithms. Hybrid adaptive neuro-fuzzy inference system (Hybrid-ANFIS), particle swarm optimization-adaptive neuro-fuzzy inference system (PSO-ANFIS) and the least-squares support vector machine (LSSVM) modeling optimized with the coupled simulated annealing (CSA) optimization have been employed for the models. The developed models, validated by utilizing various graphical and statistical methods exhibited that the Hybrid-ANFIS model estimations for the gas adsorption on 5A, T-Type, SSZ-13, and SAPO-34 zeolites with average absolute relative deviation (AARD) % of 8.21, 1.92, 4.99 and 2.26, and PSO ANFIS model estimations for the gas adsorption on zeolite 13X with an AARD of 4.85% were in good agreement with corresponding experimental data. It could be deduced that the proposed models were more prosperous and efficient in favor of the design and analysis of adsorption processes than previous ones.


Subject(s)
Greenhouse Gases , Zeolites , Adsorption , Artificial Intelligence , Fuzzy Logic , Machine Learning
5.
ACS Appl Mater Interfaces ; 13(48): 57294-57305, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34812613

ABSTRACT

The high energy demand of CO2 absorption-desorption technologies has significantly inhibited their industrial utilization and implementation of the Paris Climate Accord. Catalytic solvent regeneration is of considerable interest due to its low operating temperature and high energy efficiency. Of the catalysts available, heterogeneous catalysts have exhibited relatively poor performances and are hindered by other challenges, which have slowed their large-scale deployment. Herein, we report a facile and eco-friendly approach for synthesizing water-dispersible Fe3O4 nanocatalysts coated with a wide range of amino acids (12 representative molecules) in aqueous media. The acidic properties of water-dispersible nanocatalysts can be easily tuned by introducing different functional groups during the hydrothermal synthesis procedure. We demonstrate that the prepared nanocatalysts can be used in energy-efficient CO2 capture plants with ease-of-use, at very low concentrations (0.1 wt %) and with extra-high efficiencies (up to ∼75% energy reductions). They can be applied in a range of solutions, including amino acids (i.e., short-chain, long-chain, and cyclic) and amines (i.e., primary, tertiary, and primary-tertiary mixture). Considering the superiority of the presented water-dispersible nanocatalysts, this technology is expected to provide a new pathway for the development of energy-efficient CO2 capture technologies.

6.
J Hazard Mater ; 416: 125973, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34492882

ABSTRACT

The emerging environmental issues necessitate the engineering of novel and well-designed nanoadsorbents for advanced separation and purification applications. Despite recent advances, the facile synthesis of hierarchical micro-mesoporous metal-organic frameworks (MOFs) with tuned structures has remained a challenge. Herein, we report a simple defect engineering approach to manipulate the framework, induce mesoporosity, and crease large pore volumes in MIL-101(Cr) by embedding graphene quantum dots (GQDs) during its self-assembly process. For instance, MIL-101@GQD-3 (Vmeso: 0.68 and Vtot: 1.87 cm3/g) exhibited 300.0% and 53.3% more meso and total pore volume compared to those of the conventional MIL-101 (Vmeso: 0.17 and Vtot: 1.22 cm3/g), respectively, resulting in 1.7 and 2.8 times greater benzene and toluene loading at 1 bar and 25 °C. In addition, we found that MIL-101@GQD-3 retained its superiority over a wide range of VOC concentrations and operating temperature (25-55 °C) with great cyclic capacity and energy-efficient regeneration. Considering the simplicity of the adopted technique to induce mesoporosity and tune the nanoporous structure of MOFs, the presented GQD incorporation technique is expected to provide a new pathway for the facile synthesis of advanced materials for environmental applications.

7.
J Hazard Mater ; 384: 121317, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31586916

ABSTRACT

In this work, a series of nanoporous carbon materials were synthesized using Iranian asphaltene as a low-cost carbon source and modified by melamine as a new nitrogen-rich promoter (M-IANC). The adsorption capacity of benzene and toluene on the synthesized M-IANCs was measured at low and high concentrations by an in-house built apparatus. The results demonstrated that the addition of melamine remarkably increased the mesoporous volume (up to 1.61 cm3/g) in the nanoporous carbon structure and, subsequently, created a large surface area (2692 m2/g) and pore volume (1.71 cm3/g). The resulting M-IANC-C nanostructure (melamine:PIA mass ratio of 1:2) depicted 228.18 wt.% and 82.08 wt.% adsorption capacity for benzene and toluene, respectively, which were 19.4 and 2.8 times higher than commercial activated carbon. In addition to the distinguished adsorptive behavior for benzene and toluene removal, M-IANC-C exhibited higher cyclic adsorption capacity than those of unmodified IANC sample after four consecutive cycles. The adsorption mechanism and the role of melamine groups in the adsorption of benzene and toluene were also studied by the density functional theory (DFT) calculations. Besides the inexpensive cost of the carbon source (asphaltene), results also indicate that the M-IANC can be a suitable candidate for VOC adsorption.

8.
Data Brief ; 27: 104741, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31763398

ABSTRACT

The data presented in this paper are related to the published research article "Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent" [1]. The raw and analyzed data include the equilibrium and kinetics of CO2 absorption, the density and concentration of different CO2-containing species at upper and lower liquid phases, and particle size distribution of solid particles precipitated during CO2 absorption of aqueous and aqueous-based amino acid solvents. In addition, the SEM images of solid precipitates at the end of CO2 absorption are presented. The detailed values of this phase change amino acid solvent are crucial for large-scale implementation of CO2 capture systems with phase change behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...