Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Regen Med ; 19(2): 253-261, 2022 04.
Article in English | MEDLINE | ID: mdl-35334091

ABSTRACT

Skeletal muscle has an innate regenerative capacity to restore their structure and function following acute damages and injuries. However, in congenital muscular dystrophies, large volumetric muscle loss, cachexia, or aging, the declined regenerative capacity of skeletal muscle results in muscle wasting and functional impairment. Recent studies indicate that muscle mass and function are closely correlated with morbidity and mortality due to the large volume and location of skeletal muscle. However, the options for treating neuromuscular disorders are limited. Biomedical engineering strategies such as nanotechnologies have been implemented to address this issue.In this review, we focus on recent studies leveraging nano-sized materials for regeneration of skeletal muscle. We look at skeletal muscle pathologies and describe various proof-of-concept and pre-clinical studies that have used nanomaterials, with a focus on how nano-sized materials can be used for skeletal muscle regeneration depending on material dimensionality.Depending on the dimensionality of nano-sized materials, their application have been changed because of their different physical and biochemical properties.Nanomaterials have been spotlighted as a great candidate for addressing the unmet needs of regenerative medicine. Nanomaterials could be applied to several types of tissues and diseases along with the unique characteristics of nanomaterials. However, when confined to muscle tissue, the targets of nanomaterial applications are limited and can be extended in future research.


Subject(s)
Nanostructures , Regeneration , Muscle, Skeletal/pathology , Regenerative Medicine , Wound Healing
2.
Sci Rep ; 9(1): 9551, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31266969

ABSTRACT

Critical limb ischemia, the most severe form of peripheral artery disease, leads to extensive damage and alterations to skeletal muscle homeostasis. Although recent research has investigated the tissue-specific responses to ischemia, the role of the muscle stem cell in the regeneration of its niche components within skeletal muscle has been limited. To elucidate the regenerative mechanism of the muscle stem cell in response to ischemic insults, we explored cellular interactions between the vasculature, neural network, and muscle fiber within the muscle stem cell niche. Using a surgical murine hindlimb ischemia model, we first discovered a significant increase in subsynaptic nuclei and remodeling of the neuromuscular junction following ischemia-induced denervation. In addition, ischemic injury causes significant alterations to the myofiber through a muscle stem cell-mediated accumulation of total myonuclei and a concomitant decrease in myonuclear domain size, possibly to enhance the transcriptional and translation output and restore muscle mass. Results also revealed an accumulation of total mitochondrial content per myonucleus in ischemic myofibers to compensate for impaired mitochondrial function and high turnover rate. Taken together, the findings from this study suggest that the muscle stem cell plays a role in motor neuron reinnervation, myonuclear accretion, and mitochondrial biogenesis for skeletal muscle regeneration following ischemic injury.


Subject(s)
Extremities/blood supply , Ischemia/metabolism , Muscle, Skeletal/blood supply , Muscle, Skeletal/pathology , Neuromuscular Junction , Animals , Disease Models, Animal , Ischemia/etiology , Mice , Mitochondria, Muscle/metabolism , Myoblasts/metabolism , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...