Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci Technol ; 57(2): 413-425, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32116351

ABSTRACT

Present study addresses the fortification of mayonnaise with fish protein hydrolysate by partial replacement of egg yolk in the product. Red meat of yellowfin tuna (Thunnus albacares), a by-product from tuna canning industry was used as the source of protein hydrolysate (TPH). Substitution of egg yolk with hydrolysate imparted noticeable fish flavor to the product only at higher levels of replacement (50% and above). Emulsion stability of mayonnaise samples was not significantly affected at the given range of substitution. The preliminary product acceptability parameters indicated higher desirability with a sensory score of 7.6 ± 0.7 for a replacement ratio of 1:2::TPH:egg yolk. Hence, the same combination was further subjected to morphological, rheological characterization, and opted for storage stability studies. Fortified mayonnaise exhibited lower particle size, indicative of higher emulsion quality which was also evident in the rheological properties of the sample. Results indicated better oxidative and physicochemical stability for fortified samples compared to control under chilled conditions, suggesting the applicability of fish protein hydrolysate as fortifying and stabilizing agent in mayonnaise preparations.

2.
J Food Sci Technol ; 56(4): 2134-2146, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30996447

ABSTRACT

Microencapsulation by spray drying is a well-accepted technique for fish oil stabilization. However, severe operational conditions during atomisation destabilise the emulsion, leading to capsule collapse and induction of auto-oxidation. Hence, use of food grade cross-linkers to strengthen the wall material and antioxidants to prevent lipid oxidation has been suggested. A promising option in this line is the use of bioactive peptides, which ensure oxidative stability through structural and chemical stabilisation. Present study attempted to compare the efficacy of yellowfin tuna red meat hydrolysate in protecting the core sardine oil, when used as wall and core polymer during encapsulation. Encapsulates were characterised based on morphological and physical parameters, as well as by in vitro digestibility studies. Their storage stability was also compared under accelerated (60 °C), chilled (4 °C) and ambient conditions (28 °C). Tuna protein hydrolysate exhibited significantly higher protective efficacy when used as core polymer rather than in the wall matrix of encapsulates.

SELECTION OF CITATIONS
SEARCH DETAIL
...