Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36143689

ABSTRACT

The aim of this study is to assess the stress distribution on the bone tissue and bone-implant interface of a customized anatomic root-analog dental implant (RAI) by means of finite element analysis (FEA) for different types of bone density. A mandibular right second premolar was selected from the CBCT database. A DICOM file was converted to an STL file to create a CAD model in FEA software. The bone boundary model was created, while bone density types I-IV were determined. Von Mises stress was measured at bone tissues and bone-implant interfaces. To validate the models, the RAI was 3D printed through a laser powder-bed fusion (L-PBF) approach. The results revealed that all RAI designs could not cause plastic deformation or fracture resulting in lower stress than the ultimate tensile stress of natural bone and implant. Compared to a conventional screw-type implant, RAIs possess a more favorable stress distribution pattern around the bone tissue and the bone-implant interface. The presence of a porous structure was found to reduce the stress at cancellous bone in type IV bone density.

2.
Materials (Basel) ; 14(21)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34772102

ABSTRACT

The aim of this study is to synthesize Titania nanotubes (TNTs) on the 3D-printed Ti-6Al-4V surface and investigate the loading of antibacterial vancomycin drug dose of 200 ppm for local drug treatment application for 24 h. The antibacterial drug release from synthesized nanotubes evaluated via the chemical surface measurement and the linear fitting of Korsmeyer-Peppas model was also assessed. The TNTs were synthesized on the Ti-6Al-4V surface through the anodization process at different anodization time. The TNTs morphology was characterized using field emission scanning electron microscope (FESEM). The wettability and the chemical composition of the Ti-6Al-4V surface and the TNTs were assessed using the contact angle meter, Fourier transform infrared spectrophotometer (FTIR) and the X-ray photoelectron spectroscopy (XPS). The vancomycin of 200 ppm release behavior under controlled atmosphere was measured by the high-performance liquid chromatography (HPLC) and hence, the position for retention time at 2.5 min was ascertained. The FESEM analysis confirmed the formation of nanostructured TNTs with vertically oriented, closely packed, smooth and unperforated walls. The maximum cumulative vancomycin release of 34.7% (69.5 ppm) was recorded at 24 h. The wetting angle of both Ti-6Al-4V implant and the TNTs were found below 90 degrees. This confirmed their excellent wettability.

SELECTION OF CITATIONS
SEARCH DETAIL
...