Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell J ; 24(2): 76-84, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35279963

ABSTRACT

Objective: Acute myeloid leukemia (AML) is characterized by abnormalities of differentiation and growth of primary hematopoietic stem cells (HSCs) in the blood and bone marrow. In many studies, miR-625-5p has been shown to inhibit downstream pathways from affecting the metastasis and invasion of the integrin-linked kinase (ILK) signaling pathway. It has been proved that the expression of miR-625-5p decreases in AML cell lines. This study aimed to investigate the effect of miR-625-5p upregulation on the invasion of KG1 ell line in vitro. Materials and Methods: In this experimental study, we investigated the impact of upregulation of miR-625-5p on invasion via the ILK/AKT pathway in the KG1 cell line. After transfection using the viral method, the cellular invasion was assessed by invasion assay and the levels of miR-625-5p genes and protein were evaluated by quantitative polymerase chain reaction (qPCR) and western blotting. Moreover, CXCR4 level was assessed by flow cytometry. Results: The invasion significantly reduced in MiR-625-5p-transfected KG1 cells (P<0.01) that was concomitant with remarkably decreasing in the expression levels of ILK, NF-κB, and COX2 genes compare with the control group (P<0.01). Incontrast, MMP9, AP1, and AKT significantly increased (P<0.01, P<0.001 and P<0.01, respectively) and GSK3ß did not change significantly in MiR-625-5p-transfected KG1 cells. The protein level of NF-κB decreased (P<0.01) and MMP9 increased, however it was not significant. Moreoever, the expression of CXCR4 was significantly lower (P<0.01) in comparison with the control group. Conclusion: miR-625-5p leads to a reduction in cell invasion in the AML cell line through ILK pathway. Therefore, it could be a breakthrough in future AML-related research. However, further studies are needed to support this argument.

2.
Cell J ; 23(7): 730-735, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34979061

ABSTRACT

OBJECTIVE: Whereas prostate cancer (PrCa) may be unresponsive or moderately responsive to radiation therapy (RT)- most common modality for treatment of PrCa- patients must receive a high dose of RT In order to achieve appropriate tumour control. However, this increase in radiation dose may lead to severe adverse effects in normal tissues. Sensitization of PrCa to radiation provides an alternate approach to improve the therapeutic efficacy of RT. This study aims to assess the radiosensitisation effect of apigenin (Api) on a prostate cancer cell line (LNCaP). MATERIALS AND METHODS: In this experimental study, LNCaP cells were treated with 0-80 µM Api to investigate its effect on LNCaP cell viability and determine its half-maximal inhibitory concentration (IC50). Next, the cells were divided into four groups: i. Control, ii. Cells treated with the IC50 concentration of Api, iii. Cells treated with 2 Gy ionizing radiation (IR), and cells co-treated with Api and IR. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, real-time polymerase chain reaction (PCR), and an Annexin V-FITC/PI assay were performed to assess cell survival, Bax and Bcl-2 expressions, and presence of apoptosis and necrosis. RESULTS: Api inhibited cell survival in a dose-dependent, but not time-dependent manner. Cells treated with Api had increased amounts of early apoptosis, late apoptosis, and secondary necrosis compared to the control group. This group also had decreased Bcl-2 gene expression and up-regulated Bax gene expression. Co-treatment with Api and IR significantly inhibited cell survival, and increased early apoptosis, late apoptosis and secondary necrosis compared to the other groups. There was a significant decrease in Bcl-2 gene expression along with up-regulation of Bax gene expression, and Bax/Bcl-2 ratio changes that favoured apoptosis. CONCLUSION: Api inhibited PrCa cell survival and induced apoptosis as a single agent. In addition, Api significantly sensitized the LNCaP cells to IR and enhanced radiation-induced apoptosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...