Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int Ophthalmol ; 44(1): 110, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396074

ABSTRACT

PURPOSE: Early detection of retinal disorders using optical coherence tomography (OCT) images can prevent vision loss. Since manual screening can be time-consuming, tedious, and fallible, we present a reliable computer-aided diagnosis (CAD) software based on deep learning. Also, we made efforts to increase the interpretability of the deep learning methods, overcome their vague and black box nature, and also understand their behavior in the diagnosis. METHODS: We propose a novel method to improve the interpretability of the used deep neural network by embedding the rich semantic information of abnormal areas based on the ophthalmologists' interpretations and medical descriptions in the OCT images. Finally, we trained the classification network on a small subset of the online publicly available University of California San Diego (UCSD) dataset with an overall of 29,800 OCT images. RESULTS: The experimental results on the 1000 test OCT images show that the proposed method achieves the overall precision, accuracy, sensitivity, and f1-score of 97.6%, 97.6%, 97.6%, and 97.59%, respectively. Also, the heat map images provide a clear region of interest which indicates that the interpretability of the proposed method is increased dramatically. CONCLUSION: The proposed software can help ophthalmologists in providing a second opinion to make a decision, and primitive automated diagnoses of retinal diseases and even it can be used as a screening tool, in eye clinics. Also, the improvement of the interpretability of the proposed method causes to increase in the model generalization, and therefore, it will work properly on a wide range of other OCT datasets.


Subject(s)
Deep Learning , Retinal Diseases , Humans , Tomography, Optical Coherence/methods , Retinal Diseases/diagnosis , Diagnosis, Computer-Assisted/methods , Computers
2.
J Biomed Phys Eng ; 12(1): 1-20, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35155288

ABSTRACT

Choroid is one of the structural layers, playing a significant role in physiology of the eye and lying between the sclera and the retina. The segmentation of this layer could guide ophthalmologists in diagnosing most of the eye pathologies such as choroidal tumors and polypoidal choroidal vasculopathy. High signal-to-noise ratio and high speed imaging in Spectral-Domain Optical Coherence Tomography (SD-OCT) make choroidal imaging feasible. Several variables such as pre-operative axial length (AXL), time of day and age affect thickness of the choroidal vascularization and should be considered for segmentation of this layer. These days most of the eye specialists manually segment the choroidal layer which is time-consuming, tiresome and dependent on human errors. To overcome these difficulties, some studies have introduced different automatic choroidal segmentation methods. In this paper, we have conducted a comprehensive review on existing recently published methods for automatic choroidal segmentation algorithms.

SELECTION OF CITATIONS
SEARCH DETAIL
...