Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 8(12): e11950, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36506374

ABSTRACT

The thermal performance parameters of an improved heat exchanger tube fitted with various vortex generator inserts were investigated using numerical and experimental methods. The governing equations have been solved numerically by a Finite Volume approach employing the turbulence model ( κ - ε ). Two twisted tape types, which being inserted across a circular pipe (plain twisted tape) and (Double V-cut twisted tape), have been achieved. The hybrid nanofluid is prepared by using metal oxide [Al2O3+CuO] with distilled water at volume fraction range (0.6%, 1.2% and 1.8%), Reynolds number range (3560-8320) at twisted ratio (9.25). The experimental data for a plain tube, plain twisted tapes and double v-cut twisted tape are validated using the standard correlations available in the literature. The effect of such variables upon the average Nusselt number, friction factor, and thermal performance factor have been investigated and compared with a plain tube at the same conditions. As compared to plain twisted tape, the tube equipped with a double V-cut twisted tape with hybrid nanofluid displayed increased thermal performance. The greater vortex flow induced by the V-cuts results in more active thermal boundary layer disturbance, resulting in a greater heat transfer rate. The results show that thermal performance factor for hybrid nanofluid in plain circular tube at ( ∅ = 1.8 %) and Reynolds number (8320) is about (1.068), when the plain twisted tape and double v-cut twisted tape inserted with hybrid nanofluid the thermal performance factor increased to (1.33) and (1.37), respectively. The results show a similar trend for both numerical and experimental cases. The comparison between the experimental and numerical results have maximum error was (9.7)%.

2.
Heliyon ; 7(5): e06907, 2021 May.
Article in English | MEDLINE | ID: mdl-34007926

ABSTRACT

Mixed convection heat transfer of Cu-water nanofluid in an arc cavity with non-uniform heating has been numerically studied. The top flat moving wall is isothermally cooled at Tc and moved with a constant velocity. While the heated arc stationary wall of the cavity is maintained at a hot temperature Th. FORTRAN code is used to solve the mass, momentum, and energy equations in dimensionless form with suitable boundary conditions. In this study, the Reynolds number changed from 1 to 2000, and the Rayleigh number changed from 0 to 107. Also, the range of nanoparticles volume fraction extends from ϕ = 0 to 0.07. Stream vorticity method selected for the discretization of flow and energy equations. The present results are compared with the previous results for the validation part, where the results found a good agreement with the others works. The isotherms are regulated near the arc-shape wall causing a steep temperature gradient at these regions and the local and average heat transfer rate increases with increased volume fraction or Reynolds number or Rayleigh number. Finally, Correlation equations of the average Nusselt number from numerical results are presented.

3.
Heliyon ; 6(11): e05568, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33869814

ABSTRACT

The present work includes a numerical study of natural convection heat transfer in symmetrical and unsymmetrical corrugated annuli filled with H2O-Al2O3 nanofluid. In this study, higher and lower temperatures were kept constant at inner and outer cylinders of the annulus; respectively. Eight mathematical models with an aspect ratio of 1.5 were developed to find the best model giving the highest heat transfer rates. The stream-vorticity formulation in curvilinear coordinates was used to solve the governing equations of heat transfer and fluid motion. The influences of Rayleigh number. ( ( 10 3 ≤ Ra ≤ 10 6 ) and volume fraction of nanoparticles. ( 0 ≤ ϕ ≤ 0.25 ) on isotherms, streamlines, local and average Nusselt numbers on the inner and outer cylinder were investigated. The results show that the heat transfer rate is significantly increased with an increase in nanoparticles volume fraction and Rayleigh number. The activity of the heated surface is increased with an increase in the undulation number, but the flow motion tends to be most difficult in the spaces between active undulation walls. Moreover, the heat transfer rates in unsymmetrical annuli are relatively higher than the rates in the symmetrical annuli. There are no evident changes in isotherms with an increase in the nanofluid volume fraction. Correlations for the mean Nusselt number on the inner and outer walls of annulus were deduced as a function of Rayleigh number and nanoparticles volume fraction for eight models with an accuracy range of 8-15 %.

SELECTION OF CITATIONS
SEARCH DETAIL
...