Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(7): e17298, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37539132

ABSTRACT

The etiology of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) is still obscure as are the processes that enable the progression of MGUS to MM. Understanding the unique vs. shared transcriptomes can potentially elucidate why individuals develop one or the other. Furthermore, highlighting key pathways and genes involved in the pathogenesis of MM or the development of MGUS to MM may allow the discovery of novel drug targets and therapies. We employed STARGEO platform to perform three separate meta-analysis to compare MGUS and MM transcriptomes. For these analyses we tagged (1) 101 MGUS patient plasma cells from bone marrow samples and 64 plasma cells from healthy controls (2) 383 MM patient CD138+ cells from bone marrow and the 101 MGUS samples in the first analysis as controls (3) 517 MM patient peripheral blood samples and 97 peripheral blood samples from healthy controls. We then utilized Ingenuity Pathway Analysis (IPA) to analyze the unique genomic signatures within and across these samples. Our study identified genes that may have unique roles in MGUS (GADD45RA and COMMD3), but also newly identified signaling pathways (EIF2, JAK/STAT, and MYC) and gene activity (NRG3, RBFOX2, and PARP15) in MGUS that have previously been shown to be involved in MM suggesting a spectrum of molecular overlap. On the other hand, genes such as DUSP4, RN14, LAMP5, differentially upregulated in MM, may be seen as tipping the scales from benignity to malignancy and could serve as drug targets or novel biomarkers for risk of progression. Furthermore, our analysis of MM identified newly associated gene/pathway activity such as inhibition of Wnt-signaling and defective B cell development. Finally, IPA analysis, suggests the multifactorial, oncogenic qualities of IFNγ signaling in MM may be a unifying pathway for these diverse mechanisms and prompts the need for further studies.

2.
J Pathol Inform ; 13: 100094, 2022.
Article in English | MEDLINE | ID: mdl-36268056

ABSTRACT

Background: Crohn's Disease (CD) is an inflammatory disease of the gastrointestinal tract that affects millions of patients. While great strides have been made in treatment, namely in biologic therapy such as anti-TNF drugs, CD remains a significant health burden. Method: We conducted two meta-analyses using our STARGEO platform to tag samples from Gene Expression Omnibus. One analysis compares inactive colonic biopsies from CD patients to colonic biopsies from healthy patients as a control and the other compares colonic biopsies from active CD lesions to inactive lesions. Separate tags were created to tag colonic samples from inflamed biopsies (total of 65 samples) and quiescent tissue in CD patients (total of 39 samples), and healthy tissue from non-CD patients (total of 30 samples). Results from the two meta-analyses were analyzed using Ingenuity Pathway Analysis. Results: For the inactive CD vs healthy tissue analysis, we noted FXR/RXR and LXR/RXR activation, superpathway of citrulline metabolism, and atherosclerosis signaling as top canonical pathways. The top upstream regulators include genes implicated in innate immunity, such as TLR3 and HNRNPA2B1, and sterol regulation through SREBF2. In addition, the sterol regulator SREBF2, lipid metabolism was the top disease network identified in IPA (Fig. 1). Top upregulated genes hold implications in innate immunity (DUOX2, REG1A/1B/3A) and cellular transport and absorption (ABCG5, NPC1L1, FOLH1, and SLC6A14). Top downregulated genes largely held roles in cell adhesion and integrity, including claudin 8, PAQR5, and PRKACB.For the active vs inactive CD analysis, we found immune cell adhesion and diapedesis, hepatic fibrosis/hepatic stellate cell activation, LPS/IL-1 inhibition of RXR function, and atherosclerosis as top canonical pathways. Top upstream regulators included inflammatory mediators LPS, TNF, IL1B, and TGFB1. Top upregulated genes function in the immune response such as IL6, CXCL1, CXCR2, MMP1/7/12, and PTGS2. Downregulated genes dealt with cellular metabolism and transport such as CPO, RBP2, G6PC, PCK1, GSTA1, and MEP1B. Conclusion: Our results build off established and recently described research in the field of CD. We demonstrate the use of our user-friendly platform, STARGEO, in investigating disease and finding therapeutic avenues.

3.
World J Gastrointest Oncol ; 14(9): 1856-1873, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36187396

ABSTRACT

BACKGROUND: Hepatitis B virus (HBV) is a cause of hepatocellular carcinoma (HCC). Interestingly, this process is not necessarily mediated through cirrhosis and may in fact involve oncogenic processes. Prior studies have suggested specific oncogenic gene expression pathways were affected by viral regulatory proteins. Thus, identifying these genes and associated pathways could highlight predictive factors for HCC transformation and has implications in early diagnosis and treatment. AIM: To elucidate HBV oncogenesis in HCC and identify potential therapeutic targets. METHODS: We employed our Search, Tag, Analyze, Resource platform to conduct a meta-analysis of public data from National Center for Biotechnology Information's Gene Expression Omnibus. We performed meta-analysis consisting of 155 tumor samples compared against 185 adjacent non-tumor samples and analyzed results with ingenuity pathway analysis. RESULTS: Our analysis revealed liver X receptors/retinoid X receptor (RXR) activation and farnesoid X receptor/RXR activation as top canonical pathways amongst others. Top upstream regulators identified included the Ras family gene rab-like protein 6 (RABL6). The role of RABL6 in oncogenesis is beginning to unfold but its specific role in HBV-related HCC remains undefined. Our causal analysis suggests RABL6 mediates pathogenesis of HBV-related HCC through promotion of genes related to cell division, epigenetic regulation, and Akt signaling. We conducted survival analysis that demonstrated increased mortality with higher RABL6 expression. Additionally, homeobox A10 (HOXA10) was a top upstream regulator and was strongly upregulated in our analysis. HOXA10 has recently been demonstrated to contribute to HCC pathogenesis in vitro. Our causal analysis suggests an in vivo role through downregulation of tumor suppressors and other mechanisms. CONCLUSION: This meta-analysis describes possible roles of RABL6 and HOXA10 in the pathogenesis of HBV-related HCC. RABL6 and HOXA10 represent potential therapeutic targets and warrant further investigation.

4.
World J Hepatol ; 14(7): 1382-1397, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36158924

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the United States and globally. The currently understood model of pathogenesis consists of a 'multiple hit' hypothesis in which environmental and genetic factors contribute to hepatic inflammation and injury. AIM: To examine the genetic expression of NAFLD and non-alcoholic steatohepatitis (NASH) tissue samples to identify common pathways that contribute to NAFLD and NASH pathogenesis. METHODS: We employed the Search Tag Analyze Resource for Gene Expression Omnibus platform to search the The National Center for Biotechnology Information Gene Expression Omnibus to elucidate NAFLD and NASH pathology. For NAFLD, we conducted meta-analysis of data from 58 NAFLD liver biopsies and 60 healthy liver biopsies; for NASH, we analyzed 187 NASH liver biopsies and 154 healthy liver biopsies. RESULTS: Our results from the NAFLD analysis reinforce the role of altered metabolism, inflammation, and cell survival in pathogenesis and support recently described contributors to disease activity, such as altered androgen and long non-coding RNA activity. The top upstream regulator was found to be sterol regulatory element binding transcription factor 1 (SREBF1), a transcription factor involved in lipid homeostasis. Downstream of SREBF1, we observed upregulation in CXCL10, HMGCR, HMGCS1, fatty acid binding protein 5, paternally expressed imprinted gene 10, and downregulation of sex hormone-binding globulin and insulin-like growth factor 1. These molecular changes reflect low-grade inflammation secondary to accumulation of fatty acids in the liver. Our results from the NASH analysis emphasized the role of cholesterol in pathogenesis. Top canonical pathways, disease networks, and disease functions were related to cholesterol synthesis, lipid metabolism, adipogenesis, and metabolic disease. Top upstream regulators included pro-inflammatory cytokines tumor necrosis factor and IL1B, PDGF BB, and beta-estradiol. Inhibition of beta-estradiol was shown to be related to derangement of several cellular downstream processes including metabolism, extracellular matrix deposition, and tumor suppression. Lastly, we found riciribine (an AKT inhibitor) and ZSTK-474 (a PI3K inhibitor) as potential drugs that targeted the differential gene expression in our dataset. CONCLUSION: In this study we describe several molecular processes that may correlate with NAFLD disease and progression. We also identified ricirbine and ZSTK-474 as potential therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...