Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 37(27): 8204-8211, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34190561

ABSTRACT

Pickering emulsions (PEs) achieve interfacial stabilization by colloidal particle surfactants and are commonly used in food, cosmetics, and pharmaceuticals. Carbon nanotubes (CNTs) have recently been used as stabilizing materials to create dynamic single emulsions. In this study, we used the formation of Meisenheimer complexes on functionalized CNTs to fabricate complex biphasic emulsions containing hydrocarbons (HCs) and fluorocarbons (FCs). The reversible nature of Meisenheimer complex formation allows for further functionalization at the droplet-water interface. The strong affinity of fluorofluorescent perylene bisimide (F-PBI) to the CNTs was used to enhance the assembly of CNTs on the FC-water interface. The combination of different concentrations of the functionalized CNTs and the pelene additive enables predictable complex emulsion morphologies. Reversible morphology reconfiguration was explored with the addition of molecular surfactants. Our results show that the interfacial properties of functionalized CNTs have considerable utility in the fabrication of complex dynamic emulsions.


Subject(s)
Nanotubes, Carbon , Emulsions , Hydrocarbons , Surface-Active Agents , Water
2.
Waste Manag ; 78: 871-879, 2018 Aug.
Article in English | MEDLINE | ID: mdl-32559982

ABSTRACT

The aim of this work is to prepare catalysts for energy efficient conversion of polystyrene (PS) and its waste into valuable products with high conversion at 250 °C. The FeCo/Alumina bimetallic catalyst was synthesized by aqueous impregnation and structurally determined using scanning-transmission electron microscopy, temperature programmed desorption, X-ray diffraction, and X-ray photoelectron spectroscopy. Successfully, we have achieved up to 91% liquid yield with selectivities for styrene monomer (SM) up to 45 wt% and ethylbenzene (EB) up to 55 wt%, depending on the exposure time at 250 °C by FeCo/Alumina which is comparable to those of reactions at high temperatures (≥350 °C). Further increase of catalyst loadings from 200 to 400 mg also led to the decrease in styrene yield and increase in ethylbenzene yield. The analysis of the resulting clear liquid by gas chromatography/mass spectrometry (GC/MS) indicates the generation of products in the gasoline range.

SELECTION OF CITATIONS
SEARCH DETAIL
...