Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Ophthalmol ; 17: 3719-3728, 2023.
Article in English | MEDLINE | ID: mdl-38084208

ABSTRACT

Objective: Silicone oils have the role in maintaining the attachment of the retina in conditions where the risk of retinal re-detachment is high. However, silicone oils have the tendency to emulsify with subsequent complications. In this work, analyses have been performed to understand changes that occurred to the optical, and physical characteristics of the oil after removal from the vitreous cavity of patients underwent pars plana vitrectomy (PPV) for fibrovascular membranes/tractional retinal detachment (FVM/TRD). Methods: Four samples of silicone oil were allocated from patients who underwent PPV for FVM/TRD. The Fourier-transform infrared (FTIR) spectroscopy, micro-viscometry, and ultraviolet-visible spectrometer analyses were utilized to determine the changes in its chemical bondings, viscosity, absorbance, transmittance, buoyance, and specific gravity. Results: The mean age of the patients was 49.0 years. The mean duration of silicone oil implantation was 18.9 months. FTIR analysis showed significant breaking in the chemical bonding that was related to the lens status during the primary PPV, the presence of significant retinal hemorrhages, the duration of silicone oil implantation, and the degree of silicone oil filling. Similarly, viscosity and contact angle analyses revealed a reduction in the viscosity with similar factors to the FTIR analysis. Moreover, absorbance and transmittance were largely affected by the aggressiveness of FVM/TRD. Conclusion: This study revealed that certain factors such as the age of the patient, duration of silicone oil implantation, lens status, and the presence of retinal hemorrhages, the degree of silicone oil filling and aggressiveness of FVM/TRD may contribute to the emulsification process.

2.
Nanomaterials (Basel) ; 13(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37049294

ABSTRACT

We fabricated ferroelectric films of the organic molecular diisopropylammonium chloride (DIPAC) using the dip-coating technique and characterized their properties using various methods. Fourier-transform infrared, scanning electron microscopy, and X-ray diffraction analysis revealed the structural features of the films. We also performed ab-initio calculations to investigate the electronic and polar properties of the DIPAC crystal, which were found to be consistent with the experimental results. In particular, the optical band gap of the DIPAC crystal was estimated to be around 4.5 eV from the band structure total density-of-states obtained by HSE06 hybrid functional methods, in good agreement with the value derived from the Tauc plot analysis (4.05 ± 0.16 eV). The films displayed an island-like morphology on the surface and showed increasing electrical conductivity with temperature, with a calculated thermal activation energy of 2.24 ± 0.03 eV. Our findings suggest that DIPAC films could be a promising alternative to lead-based perovskites for various applications such as piezoelectric devices, optoelectronics, sensors, data storage, and microelectromechanical systems.

3.
J Ocul Pharmacol Ther ; 38(10): 717-727, 2022 12.
Article in English | MEDLINE | ID: mdl-36318488

ABSTRACT

Purpose: Silicone oil (SO) is a crucial tool in vitreoretinal surgery. SO has the tendency to emulsify depending on certain factors. In this work, detailed analyses have been conducted to understand changes that occurred to the physical, optical, and chemical characteristics of the oil after removal from the vitreous cavity. Methods: Five samples of SO were collected from patients who underwent vitrectomy for rhegmatogenous retinal detachment. The fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible spectrometer, and contact angle analysis were utilized to determine the changes in its chemical bondings, transmittance, absorbance, viscosity, buoyance, and specific gravity. Results: FTIR analysis showed significant changes in the chemical bonding that might be related to the age of the patient, lens status, the presence of retinal hemorrhages, and the exposure to laser after implantation of SO. In addition, contact angle analysis revealed that the viscosity might be affected by duration of implantation and the age of the patient. Moreover, transmittance and absorbance were largely affected by the exposure to laser retinopexy after implantation. Conclusion: This study showed that certain factors such as the age of the patient, the exposure to laser, lens status, and the presence of retinal hemorrhages may contribute to the emulsification process.


Subject(s)
Retinal Detachment , Silicone Oils , Humans , Retinal Detachment/surgery , Retinal Hemorrhage
4.
Polymers (Basel) ; 13(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803395

ABSTRACT

We report the effect of an iodine filler on photoisomerization kinetics of photo-switchable PEO-BDK-MR thin films. The kinetics of photoisomerization and time progression of PEO-BDK-MR/I2 nanocomposite thin films are investigated using UV-Vis, FTIR spectroscopies, and modified mathematical models developed using new analytical methods. Incorporating iodine filler into the PEO-BDK-MR polymeric matrix enhances the isomerization energy barrier and considerably increases the processing time. Our outcomes propose that enhanced photoisomerized and time processed (PEO-BDK-MR)/I2 thin films could be potential candidates for a variety of applications involving molecular solar thermal energy storage media.

5.
Polymers (Basel) ; 13(7)2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33916630

ABSTRACT

We report the synthesis of hybrid thin films based on polymethyl methacrylate) (PMMA) and polystyrene (PS) doped with 1%, 3%, 5%, and 7% of cerium dioxide nanoparticles (CeO2 NPs). The As-prepared thin films of (PMMA-PS) incorporated with CeO2 NPs are deposited on a glass substrate. The transmittance T% (λ) and reflectance R% (λ) of PMMA-PS/CeO2 NPs thin films are measured at room temperature in the spectral range (250-700) nm. High transmittance of 87% is observed in the low-energy regions. However, transmittance decreases sharply to a vanishing value in the high-energy region. In addition, as the CeO2 NPs concentration is increased, a red shift of the absorption edge is clearly observed suggesting a considerable decrease in the band gap energy of PMMA-PS/CeO2 NPs thin film. The optical constants (n and k) and related key optical and optoelectronic parameters of PMMA-PS/Ce NPs thin films are reported and interpreted. Furthermore, Tauc and Urbach models are employed to elucidate optical behavior and calculate the band gaps of the as-synthesized nanocomposite thin films. The optical band gap energy of PMMA-PS thin film is found to be 4.03 eV. Optical band gap engineering is found to be possible upon introducing CeO2 NPs into PMMA-PS polymeric thin films as demonstrated clearly by the continuous decrease of optical band gap upon increasing CeO2 content. Fourier-transform infrared spectroscopy (FTIR) analysis is conducted to identify the major vibrational modes of the nanocomposite. The peak at 541.42 cm-1 is assigned to Ce-O and indicates the incorporation of CeO2 NPs into the copolymers matrices. There were drastic changes to the width and intensity of the vibrational bands of PMMA-PS upon addition of CeO2 NPs. To examine the chemical and thermal stability, thermogravimetric (TGA) thermograms are measured. We found that (PMMA-PVA)/CeO2 NPs nanocomposite thin films are thermally stable below 110 °C. Therefore, they could be key candidate materials for a wide range of scaled multifunctional smart optical and optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...