Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 10(10)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081169

ABSTRACT

In this study, a method for fabricating tubular ceramic membranes via extrusion using economical and locally available bentonite-silica sand and waste palm leaves was developed as a tool for conducting the necessary task of purifying water polluted with oil and suspended solid materials produced via various industrial processes. The developed tubular ceramic membranes were found to be highly efficient at separating the pollutants from water. The properties of the fabricated membrane were evaluated via mechanical testing, pore size distribution analysis, and contact angle measurements. The water contact angle of the fabricated membrane was determined to be 55.5°, which indicates that the membrane surface is hydrophilic, and the average pore size was found to be 66 nm. The membrane was found to demonstrate excellent corrosion resistance under acidic as well as basic conditions, with weight losses of less than 1% in each case. The membrane surface was found to be negatively charged and it could strongly repulse the negatively charged fine bentonite particles and oil droplets suspended in the water, thereby enabling facile purification through backwashing. The obtained ceramic membranes with desirable hydrophilic properties can thus serve as good candidates for use in ultrafiltration processes.

2.
Membranes (Basel) ; 8(4)2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30463248

ABSTRACT

High-performance polybenzimidazole (PBI) hollow-fiber membranes (HFMs) were fabricated through a continuous dry-jet wet spinning process at SRI International. By adjusting the spinning air gap from 4″ (10.2 cm) to 0.5″ (1.3 cm), the HFM pore sizes were enlarged dramatically without any significant change of the fiber dimensional size and barrier layer thickness. When fabricated with an air gap of 2.5″ (6.4 cm) and a surface modified by NaClO solution, the PBI HFM performance was comparable to that of a commercial reverse osmosis (RO) HFM product from Toyobo in terms of salt (NaCl) rejection and water permeability. The PBI RO HFM was positively surface charged in acidic conditions (pH < 7), which enhanced salt rejection via the Donnan effect. With an air gap of 1.5″ (3.8 cm), the PBI HFM rejected MgSO4 and Na2SO4 above 95%, a result that compares favorably with that achieved by nanofiltration. In addition, the PBI HFM has a defect-free structure with an ultra-thin barrier layer and porous sublayer. We believe PBI HFMs are ideal for water purification and can be readily commercialized.

SELECTION OF CITATIONS
SEARCH DETAIL
...