Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37999313

ABSTRACT

The ion exchange of Na+ cations was used to photosensitise titanates nanotubes (Ti-NTs) with tris(2,2'-bipyridine)ruthenium(II) cations (Ru(bpy)32+); this yielded a light-sensitised Ti-NTs composite denoted as (Ru(bpy)3)Ti-NTs, exhibiting the characteristic absorption of Ru(bpy)32+ in visible light. Incident photon-to-current efficiency (IPCE) measurements and the photocatalytic reduction of methyl viologen reaction confirmed that in the photosensitisation of the (Ru(bpy)3)Ti-NTs composite, charge transfer and charge separation occur upon excitation by ultraviolet and visible light irradiation. The photocatalytic potential of titanate nanotubes was tested in the water-splitting reaction and the H2 evolution reaction using a sacrificial agent and showed photocatalytic activity under various light sources, including xenon-mercury lamp, simulated sunlight, and visible light. Notably, in the conditions of the H2 evolution reaction when (Ru(bpy)3)Ti-NTs were submitted to simulated sunlight, they exceeded the photocatalytic activity of pristine Ti-NTs and TiO2 by a factor of 3 and 3.5 times, respectively. Also, (Ru(bpy)3)Ti-NTs achieved the photocatalytic water-splitting reaction under simulated sunlight and visible light, producing, after 4 h, 199 and 282 µmol×H2×gcat-1. These results confirm the effective electron transfer of Ru(bpy)3 to titanate nanotubes. The stability of the photocatalyst was evaluated by a reuse test of four cycles of 24 h reactions without considerable loss of catalytic activity and crystallinity.

2.
Materials (Basel) ; 16(3)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36770048

ABSTRACT

Hundreds of billions of aluminium-based cans are manufactured and used every year worldwide including those containing soft drinks. This study investigates and evaluates the performance and quality of two well-known energy and soft drinks brands, Green Cola and Red Bull. Recent health hazards and concerns have been associated with aluminium leakage and bisphenol A (BPA) dissociation from the can's internal protective coating. The cans were examined under four conditions, including coated and uncoated samples, the soft drink's main solution, and 0.1 M acetic acid solution. Electrochemical measurements such as potentiodynamic polarization and impedance spectroscopy (EIS), element analyses using inductively coupled plasma optical emission spectrometry (ICP-OES), and energy dispersive X-ray spectroscopy (EDS) were performed. In addition, sample characterization by scanning electron microscopy (SEM) and X-ray diffraction spectroscopy (XRD) were employed to comprehensively study and analyze the effect of corrosion on the samples. Even though the internal coating provided superior corrosion protection concerning main or acetic acid solutions, it failed to prevent aluminium from dissolving in the electrolyte. Green Cola's primary solution appears to be extremely corrosive, as the corrosion rate increased by approximately 333% relative to the acetic acid solution. Uncoated samples resulted in increases in the percentage of oxygen, the appearance of more corrosion spots, and decreases in crystallinity. The ICP-OES test detected dangerous levels of aluminium in the Green Cola solution, which increased significantly after increasing the conductivity of the solution.

3.
Materials (Basel) ; 15(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36079470

ABSTRACT

In this study, billets of the ZK30 (Mg-3Zn-0.6 Zr-0.4 Mn, wt%) alloy were Equal Channel Angle Pressing (ECAP) processed for up to four passes of routes Bc (with rotating the sample 90° in the same direction between the subsequent passes), A (without sample rotation), and C (with sample rotating 180°) after each pass at a temperature of 250 °C and a ram speed of 10 mm/min using a die with an internal channel angle of 90°. The microstructural evolution and the crystallographic texture were investigated using a Scanning Electron Microscope (SEM) equipped with the Electron Back-Scatter Diffraction (EBSD) technique. Corrosion measurements were conducted in ringer lactate which is a simulated body fluid. The Vickers microhardness test and tensile tests were conducted for the alloy before and after processing. The as-annealed billets exhibited a bimodal structure as fine grains (more than 3.39 µm) coexisted with almost-equiaxed coarse grains (less than 76.73 µm); the average grain size was 26.69 µm. Further processing until four passes resulted in enhanced grain refinement and full Dynamic Recrystallization (DRX). ECAP processing through 4-Bc, 4-A, and 4-C exhibited significant reductions in grain size until they reached 1.94 µm, 2.89 µm, and 2.25 µm, respectively. Four-pass processing also resulted in the transformation of low-angle grain boundaries into high-angle grain boundaries. The previous conclusion was drawn from observing the simultaneous decrease in the fraction of low-angle grain boundaries and an increase in the fraction of high-angle grain boundaries. The pole figures revealed that 4-Bc, 4-A, and 4-C reduced the maximum texture intensity of the as-annealed billets. The potentiodynamic polarization findings revealed that route Bc is the most effective route in improving the corrosion rate, whereas the Electrochemical Impedance Spectroscopy (EIS) revealed that routes A and Bc improved the corrosion resistance with nearly identical values. Finally, 4-Bc resulted in the highest increase in Vickers hardness, yield stress, and ultimate tensile strength with values of 80.8%, 19.3%, and 44.5%, alongside a 31% improvement in ductility, all compared to the AA condition.

4.
Materials (Basel) ; 15(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36013656

ABSTRACT

Magnesium-Zinc-Zirconium (Mg-Zn-Zr) alloys have caught considerable attention in medical applications where biodegradability is critical. The combination of their good biocompatibility, improved strength, and low cytotoxicity makes them great candidates for medical implants. This research investigation is focused on providing further insight into the effects of equal channel angular processing (ECAP) on the corrosion behavior, microstructure evolution, and mechanical properties of a biodegradable ZK30 alloy. Billets of Mg-3Zn-0.6 Zr (ZK30) alloy were processed through ECAP up to 4 passes of route Bc (rotating the billets 90° in the same direction between the subsequent passes) at 250 °C. Electron back-scatter diffraction (EBSD) was utilized to investigate the microstructural evolution as well as the crystallographic texture. Several electrochemical measurements were carried out on both a simulated body fluid and a 3.5% sodium chloride (NaCl) solution. Mechanical properties such as Vicker's hardness and tensile properties were also assessed. The as-annealed (AA) microstructure was dominated by equiaxed coarse recrystallized grains with an average grain size of 26.69 µm. After processing, a geometric grain subdivision took place due to the severe plastic deformation. Processed samples were characterized by grain refinement and high density of substructures. The 4-passes sample experienced a reduction in the grain size by 92.8% compared with its AA counterpart. The fraction of high-angle grain boundaries increased significantly after 4-passes compared to the 1-pass processed sample. With regards to the crystallographic texture, the AA condition had its {0001} basal planes mostly oriented parallel to the transversal direction. On the other hand, ECAP processing resulted in crystallographic texture changes, such as the shifting of the ZK30 shear plane to be aligned at 45° relative to the extrusion direction (ED). Furthermore, the maximum texture intensity was reduced from 14 times random (AA billets) to 8 times random after ECAP processing through 4-passes. The corrosion rate of the 4-passes sample was tremendously reduced by 99% and 45.25% compared with its AA counterpart in the simulated body fluid and the NaCl solution, respectively. The pitting corrosion resistance of ZK30 showed notable improvements in the simulated body fluid by 471.66% and 352% during processing through 1-pass and 4-passes, respectively, compared with the 3.5% NaCl findings. Finally, significant improvements in the tensile strength, hardness, and ductility were also achieved.

5.
Materials (Basel) ; 15(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35629750

ABSTRACT

In this study, the corrosion performance of AA2014 aluminum alloy was enhanced by coating the alloy with a layer containing silica (SiC) that was formed by the plasma electrolytic oxidation (PEO) process. The PEO process was performed with different electrical parameters (frequency, current mode, and duty ratio) and both with and without SiC to investigate the microstructural and electrochemical differences in the coated samples produced from the process. The microstructure and composition of the PEO coatings were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). A potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical behavior of the AA2014-PEO-coated samples. The potentiodynamic polarization showed that the SiC-PEO-coated samples had a significantly decreased corrosion rate (99.8%) compared with the uncoated AA2014 Al alloy. Our results showed that the coats containing SiC possessed a much higher corrosion resistance than both the uncoated AA2014 Al alloy (8,344,673%) and the SiC-free coatings, which possess low corrosion resistance, because of their higher chemical stability and more compact microstructure.

6.
Heliyon ; 7(6): e07289, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34195410

ABSTRACT

Titanium oxide has been commonly used for wide range of applications due to excellent corrosion resistance. This study presents the impact of graphene oxide (GO) addition to titanium oxide as coating materials during titanium anodization process on the corrosion behaviour. The GO was prepared by electrochemical exfoliation using low voltage mode in a sodium sulphate electrolyte, which is easier and more environmentally friendly compared to the chemical approach. Raman and scanning electron microscope were used to examine the success of the exfoliation process. The surface morphologies and potentiodynamic polarization results indicate that the addition of GO significantly inhibit the pitting corrosion and stabilize passivation current densities over wide ranges of anodic potentials. The untreated titanium, however, noticeably displayed fluctuation of anodic current densities, confirming the presence of pitting corrosion. The results obtained by electrochemical impedance spectroscopy (EIS) also confirm that the addition of GO enhanced corrosion protection even at higher frequency ranges. The cyclic polarization scan results show a positive shift in the re-passivation potential Erep after the addition of GO. This work emphasizes that the addition of GO during anodization of titanium not only protect its surface from pitting corrosion but also provide a strong passive layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...