Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Plant J ; 119(1): 84-99, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38578218

ABSTRACT

Tuta absoluta ("leafminer"), is a major pest of tomato crops worldwide. Controlling this insect is difficult due to its efficient infestation, rapid proliferation, and resilience to changing weather conditions. Furthermore, chemical pesticides have only a short-term effect due to rapid development of T. absoluta strains. Here, we show that a variety of tomato cultivars, treated with external phenylalanine solutions exhibit high resistance to T. absoluta, under both greenhouse and open field conditions, at different locations. A large-scale metabolomic study revealed that tomato leaves absorb and metabolize externally given Phe efficiently, resulting in a change in their volatile profile, and repellence of T. absoluta moths. The change in the volatile profile is due to an increase in three phenylalanine-derived benzenoid phenylpropanoid volatiles (BPVs), benzaldehyde, phenylacetaldehyde, and 2-phenylethanol. This treatment had no effect on terpenes and green leaf volatiles, known to contribute to the fight against insects. Phe-treated plants also increased the resistance of neighboring non-treated plants. RNAseq analysis of the neighboring non-treated plants revealed an exclusive upregulation of genes, with enrichment of genes related to the plant immune response system. Exposure of tomato plants to either benzaldehyde, phenylacetaldehyde, or 2-phenylethanol, resulted in induction of genes related to the plant immune system that were also induced due to neighboring Phe-treated plants. We suggest a novel role of phenylalanine-derived BPVs as mediators of plant-insect interactions, acting as inducers of the plant defense mechanisms.


Subject(s)
Phenylalanine , Plant Leaves , Solanum lycopersicum , Volatile Organic Compounds , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/parasitology , Phenylalanine/metabolism , Volatile Organic Compounds/metabolism , Animals , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Leaves/parasitology , Benzaldehydes/metabolism , Benzaldehydes/pharmacology , Acetaldehyde/analogs & derivatives , Acetaldehyde/metabolism , Acetaldehyde/pharmacology , Moths/physiology , Moths/drug effects , Plant Diseases/parasitology , Plant Diseases/immunology , Manduca/physiology
2.
Article in English | MEDLINE | ID: mdl-37787892

ABSTRACT

Enormous fresh agricultural produce is wasted annually due to rots caused by pathogenic microorganisms. Most pathogenic fungi attack the harvested produce by penetrating the fruit at the field and remaining quiescent or latent until the fruit ripens or senescence. In this work, a recently developed simple, cost-effective, and high-throughput 96-well plate-based assay was applied to determine the presence of pathogenic fungi in their latent stage. The surface strands immobilized on the 96-well plate, only with the presence of the complementary RNA marker (enoyl-CoA hydratase (ECH)) of the latent fungal-pathogen Colletotrichum gloeosporioides will create a complex with the target and reporter (labeled with the horseradish peroxidase (HRP) enzyme) strands for positive signal generation. The developed assay demonstrated 3.1-fold higher specificity for the latent marker (ECH) of C. gloeosporioides compared to latent markers of other pathogenic fungi. A 2 nM detection limit of target strands was demonstrated, showing a high plate sensitivity, and was further validated with biological samples extracted from latent infection in tomato fruit. The developed assay provides a new economical tool for detecting the presence of latent RNA markers of pathogenic fungi in agricultural produce, ultimately improving postharvest decision-making and reducing postharvest losses.

3.
Anal Chim Acta ; 1267: 341394, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37257967

ABSTRACT

Paper-based analytical devices (PADs) have gained enormous attention because of their low-cost, simple fabrication, and portability. Here, we propose a paper-based device for performing reverse transcription loop-mediated isothermal amplification (RT-LAMP) with real-time simultaneous detection of C. gloeosporioides latent infections in tomatoes. RT-LAMP-based PAD platform comprises a paper substrate on which the DNA amplification reaction occurs. Among different types of tested papers, cellulose membrane (grade 4) enabled effective visualization of the amplification result. The assay was found highly selective for the latent stage of C. gloeosporioides with lower limit of detection (LOD) of 0.5 pg of total extracted RNA. The developed assay generated the results within 40 min and hence can be efficiently employed for identifying C. gloeosporioides in resource-limited settings.


Subject(s)
Colletotrichum , Colletotrichum/genetics , Colorimetry/methods , Fruit , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques/methods , Reverse Transcription , Sensitivity and Specificity
4.
Mol Plant Microbe Interact ; 36(8): 502-515, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37147768

ABSTRACT

Lasiodiplodia theobromae attacks over 500 plant species and is an important pathogen of tropical and subtropical fruit. Due to global warming and climate change, the incidence of disease associated with L. theobromae is rising. Virulence tests performed on avocado and mango branches and fruit showed a large diversity of virulence of different L. theobromae isolates. Genome sequencing was performed for two L. theobromae isolates, representing more virulent (Avo62) and less-virulent (Man7) strains, to determine the cause of their variation. Comparative genomics, including orthologous and single-nucleotide polymorphism (SNP) analyses, identified SNPs in the less-virulent strain in genes related to secreted cell wall-degrading enzymes, stress, transporters, sucrose, and proline metabolism, genes in secondary metabolic clusters, effectors, genes involved in the cell cycle, and genes belonging to transcription factors that may contribute to the virulence of L. theobromae. Moreover, carbohydrate-active enzyme analysis revealed a minor increase in gene counts of cutinases and pectinases and the absence of a few glycoside hydrolases in the less-virulent isolate. Changes in gene-copy numbers might explain the morphological differences found in the in-vitro experiments. The more virulent Avo62 grew faster on glucose, sucrose, or starch as a single carbon source. It also grew faster under stress conditions, such as osmotic stress, alkaline pH, and relatively high temperature. Furthermore, the more virulent isolate secreted more ammonia than the less-virulent one both in vitro and in vivo. These study results describe genome-based variability related to L. theobromae virulence, which might prove useful for the mitigation of postharvest stem-end rot. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Subject(s)
Ascomycota , Virulence/genetics , Polygalacturonase/metabolism
5.
Microbiol Spectr ; : e0480522, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36861984

ABSTRACT

Pathogenic fungi are the main cause of yield loss and postharvest loss of crops. In recent years, some antifungal microorganisms have been exploited and applied to prevent and control pathogenic fungi. In this study, an antagonistic bacteria KRS027 isolated from the soil rhizosphere of a healthy cotton plant from an infected field was identified as Burkholderia gladioli by morphological identification, multilocus sequence analysis, and typing (MLSA-MLST) and physiobiochemical examinations. KRS027 showed broad spectrum antifungal activity against various phytopathogenic fungi by secreting soluble and volatile compounds. KRS027 also has the characteristics of plant growth promotion (PGP) including nitrogen fixation, phosphate, and potassium solubilization, production of siderophores, and various enzymes. KRS027 is not only proven safe by inoculation of tobacco leaves and hemolysis test but also could effectively protect tobacco and table grapes against gray mold disease caused by Botrytis cinerea. Furthermore, KRS027 can trigger plant immunity by inducing systemic resistance (ISR) activated by salicylic acid- (SA), jasmonic acid- (JA), and ethylene (ET)-dependent signaling pathways. The extracellular metabolites and volatile organic compounds (VOCs) of KRS027 affected the colony extension and hyphal development by downregulation of melanin biosynthesis and upregulation of vesicle transport, G protein subunit 1, mitochondrial oxidative phosphorylation, disturbance of autophagy process, and degrading the cell wall of B. cinerea. These results demonstrated that B. gladioli KRS027 would likely become a promising biocontrol and biofertilizer agent against fungal diseases, including B. cinerea, and would promote plant growth. IMPORTANCE Searching the economical, eco-friendly and efficient biological control measures is the key to protecting crops from pathogenic fungi. The species of Burkholderia genus are widespread in the natural environment, of which nonpathogenic members have been reported to have great potential for biological control agents and biofertilizers for agricultural application. Burkholderia gladioli strains, however, need more study and application in the control of pathogenic fungi, plant growth promotion, and induced systemic resistance (ISR). In this study, we found that a B. gladioli strain KRS027 has broad spectrum antifungal activity, especially in suppressing the incidence of gray mold disease caused by Botrytis cinerea, and can stimulate plant immunity response via ISR activated by salicylic acid- (SA), jasmonic acid- (JA), and ethylene (ET)-dependent signaling pathways. These results indicate that B. gladioli KRS027 may be a promising biocontrol and biofertilizer microorganism resource in agricultural applications.

6.
Talanta ; 255: 124251, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36630787

ABSTRACT

Anthracnose, caused by the fungus Colletotrichum gloeosporioides, is one of the major causes of postharvest decay of fruits and vegetables. Detection of the pathogen at an early stage of infection is crucial to developing a disease management strategy. In this work, a loop-mediated isothermal amplification (LAMP) assay was developed for the rapid detection of C. gloeosporioides targeting the transcript enoyl-CoA hydratase (ECH) that significantly upregulates only during C. gloeosporioides quiescent stage. The assay enabled a naked-eye detection of C. gloeosporioides RNA within 23 min based on a color change of LAMP products from pink to yellow. The detection limit of the LAMP assay was 1 pg of total RNA extracted from fruit peel in a 25 µL reaction. Positive results were obtained only in samples carrying the ECH gene, whereas no cross-reaction was observed for a different quiescent marker (histone deacetylase (HDAC)) or an appressorium marker (scytalone dehydratase, (SD)), indicating the high specificity of the method. Hence, the results indicate that the developed LAMP assay is a rapid, highly sensitive, and specific tool for the early detection of quiescent C. gloeosporioides and could be employed to manage postharvest diseases.


Subject(s)
Colletotrichum , Fruit , Fruit/microbiology , Colletotrichum/genetics , Colorimetry , Nucleic Acid Amplification Techniques/methods , RNA , Technology , Sensitivity and Specificity
7.
Food Chem ; 405(Pt B): 134909, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36442247

ABSTRACT

Cold is the best means of prolonging fruit storage. However, tropical fruit are susceptible to cold storage. The mode of action of mango fruit tolerance to suboptimal cold temperature of 7 or 10 °C after postharvest application of 8 mM phenylalanine was investigated using transcriptomic and metabolomic analyses of mango fruit during suboptimal cold storage. Phenylalanine-treated fruit had less chilling injuries-black spot and pitting electrolyte leakage,-and reduced decay after suboptimal cold storage. Phenylalanine treatment induced genes related to plant-pathogen interactions, plant hormone signal transduction, and the phenylpropanoid pathway, increasing the levels of the flavonoids quercetin and kaempferol glycosides and anthocyanins, and antioxidant content. Reduced oxidation led to lower lipid peroxidation, and a reduction in fatty acid-degradation products, e.g., volatile aldehydes. Treatment with phenylalanine, therefore, enhances chilling tolerance of mango fruit through regulation of metabolic and defense-related pathways, maintaining high levels of flavonoids, and antioxidants enzyme activity, and reducing H2O2 content, lipid peroxidation, and volatile aldehydes.


Subject(s)
Mangifera , Mangifera/genetics , Temperature , Phenylalanine , Anthocyanins , Fruit/genetics , Flavonoids , Aldehydes , Antioxidants
8.
Front Plant Sci ; 13: 933484, 2022.
Article in English | MEDLINE | ID: mdl-35845688

ABSTRACT

Cyclocarya paliurus is an endemic Chinese tree species with considerable medicinal, timber, and horticultural value. The anthracnose disease of C. paliurus is caused by the fungal pathogen Colletotrichum fructicola, which results in great losses in yield and quality. Here, resistance evaluation of six cultivars of C. paliurus exhibited varying degrees of resistance to C. fructicola infection, where Wufeng was the most resistant and Jinggangshan was the most susceptive. Physiological measurements and histochemical staining assays showed that the Wufeng cultivar exhibits intense reactive oxygen species accumulation and defense capabilities. A multiomics approach using RNA sequencing and metabolome analyses showed that resistance in C. paliurus (Wufeng) is related to early induction of reprogramming of the flavonoid biosynthesis pathway. In vitro antifungal assays revealed that the flavonoid extracts from resistant cultivars strongly inhibited C. fructicola hyphal growth than susceptible cultivars. Relative gene expression analysis further demonstrated the pivotal antifungal role of C. paliurus flavonoids in targeting Colletotrichum appressorium formation. Together, these results represent a novel resistance mechanism of C. paliurus against anthracnose through the reprogramming of flavonoids, which will lay a foundation for breeding anthracnose-resistant varieties and the application of flavonoid extraction of C. paliurus as a natural antifungal treatment.

9.
Foods ; 11(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35267356

ABSTRACT

Fungal pathogens are a central cause of the high wastage rates of harvested fruit and vegetables. Seaweeds from the genus Ulva are fast-growing edible green macroalgae whose species can be found on the shore of every continent, and therefore present a resource that can be utilized on a global scale. In this study, we found that the application of ulvan extract, a sulfated polysaccharide extracted from Ulva rigida (1000 mg/L), elicited table grapes defense and reduced the incidence and decay area of Botrytis cinerea by 43% and 41%, respectively. In addition, compared to the control group at two days post-treatment, ulvan extract elicited a variety of defense-related biomarkers such as a 43% increase in the activity of reactive oxygen species, 4-fold increase in the activity of catalase, 2-fold increase in the activity of superoxide dismutase and 1.4-fold increase in the activity of chitinase. No increase was observed in phenylalanine ammonia-lyase activity, and the treatment did not affect fruit quality parameters such as the pH levels, sugar levels, and titratable acidity of grapes. These results illustrate the potential of ulvan extract to naturally induce the plant defense response and to reduce postharvest decay.

10.
Antioxidants (Basel) ; 11(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35326141

ABSTRACT

Anthocyanins are secondary metabolites responsible for the red coloration of mango and apple. The red color of the peel is essential for the fruit's marketability. Anthocyanins and flavonols are synthesized via the flavonoid pathway initiated from phenylalanine (Phe). Anthocyanins and flavonols have antioxidant, antifungal, and health-promoting properties. To determine if the external treatment of apple and mango trees with Phe can induce the red color of the fruit peel, the orchards were sprayed 1 to 4 weeks before the harvest of mango (cv. Kent, Shelly, and Tommy Atkins) and apple fruit (cv. Cripps pink, Gala and Starking Delicious). Preharvest Phe treatment increased the red coloring intensity and red surface area of both mango and apple fruit that was exposed to sunlight at the orchard. The best application of Phe was 2-4 weeks preharvest at a concentration of 0.12%, while a higher concentration did not have an additive effect. A combination of Phe and the positive control of prohydrojasmon (PDJ) or several applications of Phe did not have a significant added value on the increase in red color. Phe treatment increased total flavonoid, anthocyanin contents, and antioxidant activity in treated fruit compared to control fruits. High Performance Liquid Chromatography analysis of the peel of Phe treated 'Cripps pink' apples showed an increase in total flavonols and anthocyanins with no effect on the compound composition. HPLC analysis of 'Kent' mango fruit peel showed that Phe treatment had almost no effect on total flavonols content while significantly increasing the level of anthocyanins was observed. Thus preharvest application of Phe combined with sunlight exposure offers an eco-friendly, alternative treatment to improve one of the most essential quality traits-fruit color.

11.
Plant Biotechnol J ; 20(1): 226-237, 2022 01.
Article in English | MEDLINE | ID: mdl-34520611

ABSTRACT

Pathogenic fungi cause major postharvest losses. During storage and ripening, fruit becomes highly susceptible to fungi that cause postharvest disease. Fungicides are effective treatments to limit disease. However, due to increased public concern for their possible side effects, there is a need to develop new strategies to control postharvest fungal pathogens. Botrytis cinerea, a common postharvest pathogen, was shown to uptake small double-stranded RNA (dsRNA) molecules from the host plant. Such dsRNA can regulate gene expression through the RNA interference system. This work aimed to develop a synthetic dsRNA simultaneously targeting three essential transcripts active in the fungal ergosterol biosynthesis pathway (dsRNA-ERG). Our results show initial uptake of dsRNA in the emergence zone of the germination tube that spreads throughout the fungus and results in down-regulation of all three targeted transcripts. Application of dsRNA-ERG decreased B. cinerea germination and growth in in vitro conditions and various fruits, leading to reduce grey-mould decay. The inhibition of growth or decay was reversed by the addition of ergosterol. While dual treatment with dsRNA-ERG and ergosterol-inhibitor fungicide reduced by 100-fold the required amount of fungicide to achieve the same protection rate. The application of dsRNA-ERG induced systemic protection as shown by decreased decay development at inoculation points distant from the treatment point in tomato and pepper fruits. Overall, this study suggests that dsRNA-ERG can effectively control B. cinerea growth and grey-mould development suggesting its efficacy as a future method for postharvest control of fungal pathogens.


Subject(s)
Plant Diseases , RNA, Double-Stranded , Botrytis , Ergosterol , Plant Diseases/microbiology , RNA, Double-Stranded/genetics
12.
Talanta ; 235: 122776, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517633

ABSTRACT

Agriculture and food crops monitoring is extremely important for securing the food supply chain to human society. Here, we developed a highly specific detection method for monitoring pathogenic fungus Colletotrichum gloeosporioides using necrotrophic DNA biomarker as the recognition element and surface plasmon resonance (SPR) as transducing mechanism in the prism coupling configuration. The sensor shows its response for a wide range of concentrations from pM to µM of target DNA sequence using a complementary DNA probe immobilized on the sensor surface, which could detect concentrations as low as 7 pM. The detection limit is found to be comparable with conventional molecular-based detection platforms, achieved due to optimized spectral SPR bimetallic substrate with subpixel resolution obtained by post processing. The response time of the sensor for detection is less than 30 min at room temperature. The quick detection scheme of the sensor may facilitate the screening of a large number of samples acquired for the sorting of harvested produce. This sensor is fast, reliable, cost-effective, and can be miniaturized for portability for the screening of real samples (mRNA) in the field and packaging house.


Subject(s)
Colletotrichum , Genetic Markers , Humans , Plant Diseases , Surface Plasmon Resonance
14.
J Agric Food Chem ; 69(20): 5628-5637, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33983017

ABSTRACT

Fruits of nonastringent persimmon cultivars, as compared to astringent ones, were more resistant to Alternaria infection despite having lower polyphenol content. Metabolic analysis from the pulp of nonastringent "Shinshu", as compared to the astringent "Triumph", revealed a higher concentration of salicylic, coumaric, quinic, 5-o-feruloyl quinic, ferulic acids, ß-glucogallin, gallocatechin, catechin, and procyanidins. Selected compounds like salicylic, ferulic, and ρ-coumaric acids inhibited in vitro Alternaria growth, and higher activity was demonstrated for methyl ferulic and methyl ρ-coumaric acids. These compounds also reduced in vivo Alternaria growth and the black spot disease in stored fruits. On the other hand, methyl gallic acid was a predominant compound in the "Triumph" pulp, as compared to the "Shinshu" pulp, and it augmented Alternaria growth in vitro and in vivo. Our results might explain the high sensitivity of the cultivar "Triumph" to Alternaria. It also emphasizes that specific phenolic compounds, and not the total phenol, affect susceptibility to fungal infection.


Subject(s)
Diospyros , Alternaria , Astringents , Fruit/chemistry , Polyphenols/analysis
15.
Hortic Res ; 8(1): 17, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33423039

ABSTRACT

Mango fruit exposed to sunlight develops red skin and are more resistant to biotic and abiotic stresses. Here we show that harvested red mango fruit that was exposed to sunlight at the orchard is more resistant than green fruit to Colletotrichum gloeosporioides. LCMS analysis showed high amounts of antifungal compounds, as glycosylated flavonols, glycosylated anthocyanins, and mangiferin in red vs. green mango skin, correlated with higher antioxidant and lower ROS. However, also the green side of red mango fruit that has low levels of flavonoids was resistant, indicated induced resistance. Transcriptomes of red and green fruit inoculated on their red and green sides with C. gloeosporioides were analyzed. Overall, in red fruit skin, 2,187 genes were upregulated in response to C. gloeosporioides. On the green side of red mango, upregulation of 22 transcription factors and 33 signaling-related transcripts indicated induced resistance. The RNA-Seq analysis suggests that resistance of the whole red fruit involved upregulation of ethylene, brassinosteroid, and phenylpropanoid pathways. To conclude, red fruit resistance to fungal pathogen was related to both flavonoid toxicity and primed resistance of fruit that was exposed to light at the orchard.

16.
Plant Dis ; 105(6): 1602-1609, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33337236

ABSTRACT

Pathogenic fungi, as the Botryosphaeriaceae family, can penetrate during flowering and endophytically colonize the stem of mango fruit (Mangifera indica) without causing any visible symptoms. Those fungi become active during abiotic stress or fruit ripening and cause stem and inflorescence dieback or fruit stem-end rot (SER) fungal disease. We hypothesized that anti-fungal treatments during the main event of Botryosphaeriaceae penetration would reduce the disease. Initially, we showed that treatments with the fungicide "Switch" (fludioxonil and cyprodinil) during orchard flowering (cv. Keitt and Shelly) reduced the occurrence of pathogenic fungi in the fruit stem-end and significantly reduced fruit's incidence of SER disease. As mango orchards are sprayed weekly against powdery mildew (PM) disease during flowering, we combined two treatments against PM disease with two treatments against both PM- and SER-causing pathogens. Application of biological treatments of the fungicide "Serenade" (Bacillus subtilis) or chemical treatments of the fungicides "Luna Tranquility" (fluopyram and pyrimethanil) or "Switch" during flowering in 'Shelly' and 'Keitt' mango orchards significantly reduced inflorescence/stem dieback (up to 50%) and fruit drop and significantly increased the number of fruit per tree, which led to a significant increase in yield, up to 41%, in heavily infected orchards. In addition, this application during flowering (March to April) affected post-harvest fruit quality (August to September) by a significant (P < 0.005) reduction of the incidence and the severity of stem-end rot disease and even fruit side-rot disease, without affecting fruit ripening and other quality parameters. While all fungicides were effective, the chemical fungicides were more effective than the biological fungicide. Thus, changing the PM fungicide regime to control Botryosphaeriaceae penetration during mango orchard flowering led to reduced inflorescence/stem dieback, reduced fruit drop, increase in yield, and minimized post-harvest decay.


Subject(s)
Ascomycota , Fungicides, Industrial , Mangifera , Fruit , Fungicides, Industrial/pharmacology , Plant Diseases/prevention & control
17.
Biosensors (Basel) ; 10(12)2020 Dec 13.
Article in English | MEDLINE | ID: mdl-33322238

ABSTRACT

Half of the global agricultural fresh produce is lost, mainly because of rots that are caused by various pathogenic fungi. In this study, a complementary metal-oxide-semiconductor (CMOS)-based biosensor was developed, which integrates specific DNA strands that allow the detection of enoyl-CoA-hydratase/isomerase, which is a quiescent marker of Colletotrichum gloeosporioides fungi. The developed biosensor mechanism is based on the metal-enhanced fluorescence (MEF) phenomenon, which is amplified by depositing silver onto a glass surface. A surface DNA strand is then immobilized on the surface, and in the presence of the target mRNA within the sample, the reporter DNA strand that is linked to horseradish peroxidase (HRP) enzyme will also bind to it. The light signal that is later produced from the HRP enzyme and its substrate is enhanced and detected by the coupled CMOS sensor. Several parameters that affect the silver-deposition procedure were examined, including silver solution temperature and volume, heating mode, and the tank material. Moreover, the effect of blocking treatment (skim milk or bovine serum albumin (BSA)) on the silver-layer stability and nonspecific DNA absorption was tested. Most importantly, the effect of the deposition reaction duration on the silver-layer formation and the MEF amplification was also investigated. In the study findings a preferred silver-deposition reaction duration was identified as 5-8 min, which increased the deposition of silver on the glass surface up to 13-times, and also resulted in the amplification of the MEF phenomenon with a maximum light signal of 50 relative light units (RLU). It was found that MEF can be amplified by a customized silver-deposition procedure that results in increased detection sensitivity. The implementation of the improved conditions increased the biosensor sensitivity to 3.3 nM (4500 RLU) with a higher detected light signal as compared to the initial protocol (400 RLU). Moreover, the light signal was amplified 18.75-, 11.11-, 5.5-, 11.25-, and 3.75-times in the improved protocol for all the tested concentrations of the target DNA strand of 1000, 100, 10, 3.3, and 2 nM, respectively. The developed biosensor system may allow the detection of the pathogenic fungus in postharvest produce and determine its pathogenicity state.


Subject(s)
Biosensing Techniques , Colletotrichum/genetics , DNA, Fungal/analysis , Genetic Markers , Semiconductors
18.
Cells ; 9(11)2020 11 17.
Article in English | MEDLINE | ID: mdl-33212751

ABSTRACT

Plants grow on soils that not only provide support for root anchorage but also act as a reservoir of water and nutrients important for plant growth and development. However, environmental factors, such as high salinity, hinder the uptake of nutrients and water from the soil and reduce the quality and productivity of plants. Under high salinity, plants attempt to maintain cellular homeostasis through the production of numerous stress-associated endogenous metabolites that can help mitigate the stress. Both primary and secondary metabolites can significantly contribute to survival and the maintenance of growth and development of plants on saline soils. Existing studies have suggested that seed/plant-priming with exogenous metabolites is a promising approach to increase crop tolerance to salt stress without manipulation of the genome. Recent advancements have also been made in genetic engineering of various metabolic genes involved in regulation of plant responses and protection of the cells during salinity, which have therefore resulted in many more basic and applied studies in both model and crop plants. In this review, we discuss the recent findings of metabolic reprogramming, exogenous treatments with metabolites and genetic engineering of metabolic genes for the improvement of plant salt tolerance.


Subject(s)
Cell Engineering , Cellular Reprogramming Techniques , Salinity , Salt Tolerance/genetics , Stress, Physiological/genetics , Cellular Reprogramming Techniques/methods , Humans , Plants , Salt Tolerance/physiology
19.
Sci Rep ; 10(1): 13934, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32811849

ABSTRACT

Molecular mechanisms associated with biochar-elicited suppression of soilborne plant diseases and improved plant performance are not well understood. A stem base inoculation approach was used to explore the ability of biochar to induce systemic resistance in tomato plants against crown rot caused by a soilborne pathogen, Fusarium oxysporum f. sp. radicis lycopersici. RNA-seq transcriptome profiling of tomato, and experiments with jasmonic and salycilic acid deficient tomato mutants, were performed to elucidate the in planta molecular mechanisms involved in induced resistance. Biochar (produced from greenhouse plant wastes) was found to mediate systemic resistance against Fusarium crown rot and to simultaneously improve tomato plant growth and physiological parameters by up to 63%. Transcriptomic analysis (RNA-seq) of tomato demonstrated that biochar had a priming effect on gene expression and upregulated the pathways and genes associated with plant defense and growth such as jasmonic acid, brassinosteroids, cytokinins, auxin and synthesis of flavonoid, phenylpropanoids and cell wall. In contrast, biosynthesis and signaling of the salicylic acid pathway was downregulated. Upregulation of genes and pathways involved in plant defense and plant growth may partially explain the significant disease suppression and improvement in plant performance observed in the presence of biochar.


Subject(s)
Charcoal/pharmacology , Disease Resistance/genetics , Solanum lycopersicum/genetics , Charcoal/chemistry , Cyclopentanes/metabolism , Disease Resistance/drug effects , Fusarium/pathogenicity , Fusarium/physiology , Gene Expression Profiling/methods , Oxylipins/metabolism , Plant Diseases , Plant Roots , Salicylic Acid/metabolism , Transcriptome/genetics
20.
Plant J ; 104(1): 226-240, 2020 09.
Article in English | MEDLINE | ID: mdl-32645754

ABSTRACT

Flowers are the most vulnerable plant organ to infection by the necrotrophic fungus Botrytis cinerea. Here we show that pre-treatment of chrysanthemum (Chrysanthemum morifolium) flowers with phenylalanine (Phe) significantly reduces their susceptibility to B. cinerea. To comprehend how Phe treatment induces resistance, we monitored the dynamics of metabolites (by GC/LC-MS) and transcriptomes (by RNAseq) in flowers after Phe treatment and B. cinerea infection. Phe treatment resulted in accumulation of 3-phenyllactate and benzaldehyde, and in particular induced the expression of genes related to Ca2+ signaling and receptor kinases, implicating an induction of the defense response. Interestingly, the main effects of Phe treatment were observed in flowers exposed to B. cinerea infection, stabilizing the global fluctuations in the levels of metabolites and transcripts while reducing susceptibility to the fungus. We suggest that Phe-induced resistance is associated to cell priming, enabling rapid and targeted reprogramming of cellular defense responses to resist disease development. After Phe pre-treatment, the levels of the anti-fungal volatiles phenylacetaldehyde and eugenol were maintained and the level of coniferin, a plausible monolignol precursor in cell wall lignification, was strongly increased. In addition, Phe pre-treatment reduced ROS generation, prevented ethylene emission, and caused changes in the expression of a minor number of genes related to cell wall biogenesis, encoding the RLK THESEUS1, or involved in Ca2+ and hormonal signaling processes. Our findings point to Phe pre-treatment as a potential orchestrator of a broad-spectrum defense response which may not only provide an ecologically friendly pest control strategy but also offers a promising way of priming plants to induce defense responses against B. cinerea.


Subject(s)
Botrytis , Chrysanthemum/physiology , Flowers/physiology , Phenylalanine/physiology , Plant Diseases/immunology , Chrysanthemum/immunology , Chrysanthemum/microbiology , Ethylenes/metabolism , Flowers/immunology , Phenylalanine/metabolism , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...