Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 947: 175677, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36967079

ABSTRACT

We investigated effects of TMEM16A blockers benzbromarone, MONNA, CaCCinhA01 and Ani9 on isometric contractions in mouse bronchial rings and on intracellular calcium in isolated bronchial myocytes. Separate concentrations of carbachol (0.1-10 µM) were applied for 10 min periods to bronchial rings, producing concentration-dependent contractions that were well maintained throughout each application period. Benzbromarone (1 µM) markedly reduced the contractions with a more pronounced effect on their sustained component (at 10 min) compared to their initial component (at 2 min). Iberiotoxin (0.3 µM) enhanced the contractions, but they were still blocked by benzbromarone. MONNA (3 µM) and CaCCinhA01 (10 µM) had similar effects to benzbromarone, but were less potent. In contrast, Ani9 (10 µM) had no effect on carbachol-induced contractions. Confocal imaging revealed that benzbromarone (0.3 µM), MONNA (1 µM) and CaCCinhA01 (10 µM) increased intracellular calcium in isolated myocytes loaded with Fluo-4AM. In contrast, Ani9 (10 µM) had no effect on intracellular calcium. Benzbromarone and MONNA also increased calcium in calcium-free extracellular solution, but failed to do so when intracellular stores were discharged with caffeine (10 mM). Caffeine was unable to cause further discharge of the store when applied in the presence of benzbromarone. Ryanodine (100 µM) blocked the ability of benzbromarone (0.3 µM) to increase calcium, while tetracaine (100 µM) reversibly reduced the rise in calcium induced by benzbromarone. We conclude that benzbromarone and MONNA caused intracellular calcium release, probably by opening ryanodine receptors. Their ability to block carbachol contractions was likely due to this off-target effect.


Subject(s)
Benzbromarone , Caffeine , Mice , Animals , Benzbromarone/pharmacology , Caffeine/pharmacology , Muscle, Smooth , Carbachol/pharmacology , Muscle Contraction , Myocytes, Smooth Muscle , Calcium/metabolism , Chloride Channels
2.
Function (Oxf) ; 3(6): zqac050, 2022.
Article in English | MEDLINE | ID: mdl-36325515

ABSTRACT

Beta-adrenoceptor (ß-AR) agonists inhibit cholinergic contractions of airway smooth muscle (ASM), but the underlying mechanisms are unclear. ASM cells express M3 and M2 muscarinic receptors, but the bronchoconstrictor effects of acetylcholine are believed to result from activation of M3Rs, while the role of the M2Rs is confined to offsetting ß-AR-dependent relaxations. However, a profound M2R-mediated hypersensitization of M3R-dependent contractions of ASM was recently reported, indicating an important role for M2Rs in cholinergic contractions of ASM. Here, we investigated if M2R-dependent contractions of murine bronchial rings were inhibited by activation of ß-ARs. M2R-dependent contractions were apparent at low frequency (2Hz) electric field stimulation (EFS) and short (10s) stimulus intervals. The ß1-AR agonist, denopamine inhibited EFS-evoked contractions of ASM induced by reduction in stimulus interval from 100 to 10 s and was more effective at inhibiting contractions evoked by EFS at 2 than 20 Hz. Denopamine also abolished carbachol-evoked contractions that were resistant to the M3R antagonist 4-DAMP, similar to the effects of the M2R antagonists, methoctramine and AFDX-116. The inhibitory effects of denopamine on EFS-evoked contractions of ASM were smaller in preparations taken from M2R -/- mice, compared to wild-type (WT) controls. In contrast, inhibitory effects of the ß3-AR agonist, BRL37344, on EFS-evoked contractions of detrusor strips taken from M2R -/- mice were greater than WT controls. These data suggest that M2R-dependent contractions of ASM were inhibited by activation of ß1-ARs and that genetic ablation of M2Rs decreased the efficacy of ß-AR agonists on cholinergic contractions.


Subject(s)
Muscle Contraction , Receptors, Muscarinic , Mice , Animals , Receptor, Muscarinic M2/genetics , Muscarinic Antagonists/pharmacology , Adrenergic beta-Agonists/pharmacology , Muscle, Smooth , Receptors, Adrenergic
3.
Function (Oxf) ; 3(1): zqab053, 2022.
Article in English | MEDLINE | ID: mdl-35330928

ABSTRACT

Postjunctional M2Rs on airway smooth muscle (ASM) outnumber M3Rs by a ratio of 4:1 in most species, however, it is the M3Rs that are thought to mediate the bronchoconstrictor effects of acetylcholine. In this study, we describe a novel and profound M2R-mediated hypersensitization of M3R-dependent contractions of ASM at low stimulus frequencies.. Contractions induced by 2Hz EFS were augmented by > 2.5-fold when the stimulus interval was reduced from 100 to 10 s. This effect was reversed by the M2R antagonists, methoctramine, and AFDX116, and was absent in M2R null mice. The M3R antagonist 4-DAMP abolished the entire response in both WT and M2R KO mice. The M2R-mediated potentiation of EFS-induced contractions was not observed when the stimulus frequency was increased to 20 Hz. A subthreshold concentration of carbachol enhanced the amplitude of EFS-evoked contractions in WT, but not M2R null mice. These data highlight a significant M2R-mediated potentiation of M3R-dependent contractions of ASM at low frequency stimulation that could be relevant in diseases such as asthma and COPD.


Subject(s)
Muscle Contraction , Receptors, Muscarinic , Mice , Animals , Muscle, Smooth , Acetylcholine/pharmacology , Cholinergic Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...