Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(11): e2112799119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35271394

ABSTRACT

SignificanceComplex cellular processes such as cell migration require coordinated remodeling of both the actin and the microtubule cytoskeleton. The two networks for instance exert forces on each other via active motor proteins. Here we show that, surprisingly, coupling via passive cross-linkers can also result in force generation. We specifically study the transport of actin filaments by growing microtubule ends. We show by cell-free reconstitution experiments, computer simulations, and theoretical modeling that this transport is driven by the affinity of the cross-linker for the chemically distinct microtubule tip region. Our work predicts that growing microtubules could potentially rapidly relocate newly nucleated actin filaments to the leading edge of the cell and thus boost migration.


Subject(s)
Actins , Microtubules , Actin Cytoskeleton/metabolism , Actins/metabolism , Cytoskeleton/metabolism , Kinesins , Microtubules/metabolism , Protein Transport
2.
Methods Mol Biol ; 2101: 53-75, 2020.
Article in English | MEDLINE | ID: mdl-31879898

ABSTRACT

In vitro (or cell-free) reconstitution is a powerful tool to study the physical basis of cytoskeletal organization in eukaryotic cells. Cytoskeletal reconstitution studies have mostly been done for individual cytoskeleton systems in unconfined 3D or quasi-2D geometries, which lack complexity relative to a cellular environment. To increase the level of complexity, we present a method to study co-organization of two cytoskeletal components, namely microtubules and actin filaments, confined in cell-sized water-in-oil emulsion droplets. We show that centrosome-nucleated dynamic microtubules can be made to interact with actin filaments through a tip-tracking complex consisting of microtubule end-binding proteins and an actin-microtubule cytolinker. In addition to the protocols themselves, we discuss the optimization steps required in order to build these more complex in vitro model systems of cytoskeletal interactions.


Subject(s)
Actin Cytoskeleton/metabolism , Emulsions , Microtubules/metabolism , Actin Cytoskeleton/chemistry , Actins/metabolism , Centrosome/metabolism , Cytoskeleton/metabolism , Data Interpretation, Statistical , Lipid Droplets/ultrastructure , Lipids/chemistry , Microfluidic Analytical Techniques , Microfluidics/instrumentation , Microfluidics/methods , Microtubules/chemistry , Protein Binding
3.
PLoS One ; 14(12): e0226277, 2019.
Article in English | MEDLINE | ID: mdl-31860683

ABSTRACT

Filamentous proteins are responsible for the superior mechanical strength of our cells and tissues. The remarkable mechanical properties of protein filaments are tied to their complex molecular packing structure. However, since these filaments have widths of several to tens of nanometers, it has remained challenging to quantitatively probe their molecular mass density and three-dimensional packing order. Scanning transmission electron microscopy (STEM) is a powerful tool to perform simultaneous mass and morphology measurements on filamentous proteins at high resolution, but its applicability has been greatly limited by the lack of automated image processing methods. Here, we demonstrate a semi-automated tracking algorithm that is capable of analyzing the molecular packing density of intra- and extracellular protein filaments over a broad mass range from STEM images. We prove the wide applicability of the technique by analyzing the mass densities of two cytoskeletal proteins (actin and microtubules) and of the main protein in the extracellular matrix, collagen. The high-throughput and spatial resolution of our approach allow us to quantify the internal packing of these filaments and their polymorphism by correlating mass and morphology information. Moreover, we are able to identify periodic mass variations in collagen fibrils that reveal details of their axially ordered longitudinal self-assembly. STEM-based mass mapping coupled with our tracking algorithm is therefore a powerful technique in the characterization of a wide range of biological and synthetic filaments.


Subject(s)
Collagen/chemistry , Image Processing, Computer-Assisted/methods , Microfilament Proteins/chemistry , Actins/chemistry , Algorithms , Animals , Humans , Microscopy, Electron, Scanning Transmission , Microtubules/chemistry
4.
EMBO Rep ; 20(11): e47732, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31486213

ABSTRACT

Crosstalk between the actin and microtubule cytoskeletons underlies cellular morphogenesis. Interactions between actin filaments and microtubules are particularly important for establishing the complex polarized morphology of neurons. Here, we characterized the neuronal function of growth arrest-specific 2-like 1 (Gas2L1), a protein that can directly bind to actin, microtubules and microtubule plus-end-tracking end binding proteins. We found that Gas2L1 promotes axon branching, but restricts axon elongation in cultured rat hippocampal neurons. Using pull-down experiments and in vitro reconstitution assays, in which purified Gas2L1 was combined with actin and dynamic microtubules, we demonstrated that Gas2L1 is autoinhibited. This autoinhibition is relieved by simultaneous binding to actin filaments and microtubules. In neurons, Gas2L1 primarily localizes to the actin cytoskeleton and functions as an actin stabilizer. The microtubule-binding tail region of Gas2L1 directs its actin-stabilizing activity towards the axon. We propose that Gas2L1 acts as an actin regulator, the function of which is spatially modulated by microtubules.


Subject(s)
Actins/metabolism , Axons/metabolism , Microfilament Proteins/metabolism , Microtubules/metabolism , Neurons/cytology , Neurons/metabolism , Animals , Biomarkers , COS Cells , Chlorocebus aethiops , Female , HEK293 Cells , Hippocampus/metabolism , Humans , Male , Molecular Imaging , Neurites/metabolism , Protein Binding , Protein Stability , Protein Transport , Pyramidal Cells/cytology , Pyramidal Cells/metabolism , Rats
5.
Soft Matter ; 15(14): 3036-3042, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30900710

ABSTRACT

Transiently crosslinked actin filament networks allow cells to combine elastic rigidity with the ability to deform viscoelastically. Theoretical models of semiflexible polymer networks predict that the crosslinker unbinding rate governs the timescale beyond which viscoelastic flow occurs. However a direct comparison between network and crosslinker dynamics is lacking. Here we measure the network's stress relaxation timescale using rheology and the lifetime of bound crosslinkers using fluorescence recovery after photobleaching (FRAP). Intriguingly, we observe that the crosslinker unbinding rate measured by FRAP is more than an order of magnitude slower than the rate measured by rheology. We rationalize this difference with a three-state model where crosslinkers are bound to either 0, 1 or 2 filaments, which allows us to extract crosslinker transition rates that are otherwise difficult to access. We find that the unbinding rate of singly bound crosslinkers is nearly two orders of magnitude slower than for doubly bound ones. We attribute the increased unbinding rate of doubly bound crosslinkers to the high stiffness of biopolymers, which frustrates crosslinker binding.


Subject(s)
Actin Cytoskeleton/metabolism , Biopolymers/metabolism , Actins/metabolism , Fluorescence Recovery After Photobleaching , Humans , Models, Biological , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...