Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38611847

ABSTRACT

Central and peripheral mechanisms of the endocannabinoid system (ECS) favor energy intake and storage. The ECS, especially cannabidiol (CBD) receptors, controls adipocyte differentiation (hyperplasia) and lipid accumulation (hypertrophy) in adipose tissue. In white adipose tissue, cannabidiol receptor 1 (CB1) stimulation increases lipogenesis and inhibits lipolysis; in brown adipose tissue, it decreases mitochondrial thermogenesis and biogenesis. This study compared the availability of phytocannabinoids [CBD and Δ9-tetrahydrocannabinol (THC)] and polyunsaturated fatty acids [omega 3 (ω3) and omega 6 (ω6)] in different hemp seed oils (HSO). The study also examined the effect of HSO on adipocyte lipid accumulation by suppressing cannabinoid receptors in adipogenesis-stimulated human mesenchymal stem cells (hMSCs). Most importantly, Oil-Red-O' and Nile red tests showed that HSO induced adipogenic hMSC differentiation without differentiation agents. Additionally, HSO-treated cells showed increased peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression compared to controls (hMSC). HSO reduced PPARγ mRNA expression after differentiation media (DM) treatment. After treatment with HSO, DM-hMSCs had significantly lower CB1 mRNA and protein expressions than normal hMSCs. HSO treatment also decreased transient receptor potential vanilloid 1 (TRPV1), fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MGL) mRNAs in hMSC and DM-hMSCs. HSO treatment significantly decreased CB1, CB2, TRPV1, and G-protein-coupled receptor 55 (GPCR55) protein levels in DM-hMSC compared to hMSC in western blot analysis. In this study, HSO initiated adipogenic differentiation in hMSC without DM, but it suppressed CB1 gene and protein expression, potentially decreasing adipocyte lipid accumulation and lipogenic enzymes.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Mesenchymal Stem Cells , Plant Extracts , Humans , Cannabinoids/pharmacology , Cannabidiol/pharmacology , PPAR gamma , Endocannabinoids , Adipose Tissue, Brown , RNA, Messenger
2.
AIMS Public Health ; 7(3): 679-696, 2020.
Article in English | MEDLINE | ID: mdl-32968686

ABSTRACT

BACKGROUND: Cancer is emerging as a major global health-care system challenge with a growing burden worldwide. Due to the inconsistent cancer registry system in Saudi Arabia, the epidemiology of cancer is still dispersed in the country. Consequently, this review aimed to assemble the epidemiological metrics of cancer in Saudi Arabia in light of the available published data during the period from (2010-2019). METHODS: Published literature from Saudi Arabia relating to cancer incidence, prevalence, risk factors, and other epidemiological metrics were accessed through electronic search in Medline/PubMed, Cochrane, Scopus, Web of Knowledge, Google Scholar, and public database that meet the inclusion criteria. Relevant keywords were used during the electronic search about different types of cancers in Saudi Arabia. No filters were used during the electronic searches. Data were pooled and odds ratios (ORs) and 95% confidence interval (95%CI) were calculated. A random-effects meta-analysis was performed to assess the well-determined risk factors associated with different types of cancers. RESULTS: The most common cancers in Saudi Arabia are breast, colorectal, prostate, brain, lymphoma, kidney and thyroid outnumbering respectively. Their prevalence rates and OR (95%CI) as follow: breast cancer 53% and 0.93 (0.84-1.00); colon-rectal cancer (CRC) 50.9% and 1.2 (0.81-1.77); prostate cancer 42.6% and 3.2 (0.88-31.11); brain/Central Nervous System cancer 9.6% and 2.3 (0.01-4.2); Hodgkin and non-Hodgkin's lymphoma 9.2% and 3.02 (1.48-6.17); kidney cancer 4.6% and 2.05 (1.61-2.61), and thyroid cancer 12.9% and 6.77 (2.34-19.53). CONCLUSION: Within the diverse cancers reported from Saudi Arabia, the epidemiology of some cancers magnitude 3-fold in the latest years. This increase might be attributed to the changing in the Saudi population lifestyle (adopting western model), lack of cancer awareness, lack of screening & early detection programs, social barriers toward cancer investigations. Obesity, genetics, sedentary lifestyle, tobacco use, viral infection, and iodine & Vit-D deficiency represent the apparent cancer risk factors in Saudi Arabia.

SELECTION OF CITATIONS
SEARCH DETAIL
...