Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(47): 56004-56013, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34792349

ABSTRACT

All solid-state flexible electrochemical double-layer capacitors (EDLCs) are crucial for providing energy options in a variety of applications, ranging from wearable electronics to bendable micro/nanotechnology. Here, we report on the development of robust EDLCs using aligned multiwalled carbon nanotubes (MWCNTs) grown directly on thin metal foils embedded in a poly(vinyl alcohol)/phosphoric acid (PVA/H3PO4) polymer gel. The thin metal substrate holding the aligned MWCNT assembly provides mechanical robustness and the PVA/H3PO4 polymer gel, functioning both as the electrolyte as well as the separator, provides sufficient structural flexibility, without any loss of charge storage capacity under flexed conditions. The performance stability of these devices was verified by testing them under straight and bent formations. A high value of the areal specific capacitance (CSP) of ∼14.5 mF cm-2 with an energy density of ∼1 µW h cm-2 can be obtained in these devices. These values are significantly higher (in some cases, orders of magnitude) than several graphene as well as single-walled nanotube-based EDLC's utilizing similar electrolytes. We further show that these devices can withstand multiple (∼2500) mechanical bending cycles, without losing their energy storage capacities and are functional within the temperature range of 20 to 70 °C. Several strategies for enhancing the capacitive charge storage, such as physically stacking (in parallel) individual devices, or postproduction thermal annealing of electrodes, are also demonstrated. These findings demonstrated in this article provide tremendous impetus toward the realization of robust, stackable, and flexible all solid-state supercapacitors.

2.
ACS Appl Mater Interfaces ; 12(46): 52156-52165, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33151065

ABSTRACT

Flexible and ultrasensitive biosensing platforms capable of detecting a large number of trinucleotide repeats (TNRs) are crucial for future technology development needed to combat a variety of genetic disorders. For example, trinucleotide CGG repeat expansions in the FMR1 gene can cause Fragile X syndrome (FXS) and Fragile X-associated tremor/ataxia syndrome (FXTAS). Current state-of-the-art technologies to detect repeat sequences are expensive, while relying on complicated procedures, and prone to false negatives. We reasoned that two-dimensional (2D) molybdenum sulfide (MoS2) surfaces may be useful for label-free electrochemical detection of CGG repeats due to its high affinity for guanine bases. Here, we developed a low-cost and sensitive wax-on-plastic electrochemical sensor using 2D MoS2 ink for the detection of CGG repeats. The ink containing few-layered MoS2 nanosheets was prepared and characterized using optical, electrical, electrochemical, and electron microscopic methods. The devices were characterized by electron microscopic and electrochemical methods. Repetitive CGG DNA was adsorbed on a MoS2 surface in a high cationic strength environment and the electrocatalytic current of the CGG/MoS2 interface was recorded using a soluble Fe(CN)6-3/-4 redox probe by differential pulse voltammetry (DPV). The dynamic range for the detection of prehybridized duplexes ranged from 1 aM to 100 nM with a 3.0 aM limit of detection. A detection range of 100 fM to 1 nM was recorded for surface hybridization events. Using this method, we were able to observe selectivity of MoS2 for CGG repeats and distinguish nonpathogenic from disease-associated repeat lengths. The detection of CGG repeat sequences on inkjet printable 2D MoS2 surfaces is a forward step toward developing chip-based rapid and label-free sensors for the detection of repeat expansion sequences.


Subject(s)
DNA/analysis , Disulfides/chemistry , Electrochemical Techniques/methods , Ink , Molybdenum/chemistry , Trinucleotide Repeats , Catalysis , Electrochemical Techniques/instrumentation , Electrodes , Ferrocyanides/chemistry , Limit of Detection , Oxidation-Reduction , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...