Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(6)2023 May 26.
Article in English | MEDLINE | ID: mdl-37370582

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused a global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The viral infection is reliant upon the binding between angiotensin-converting enzyme 2 receptor (ACE2) and spike protein (S). Therefore, ACE2 is a key receptor for SARS-CoV-2 to infect the host. Nonetheless, as SARS-CoV-2 is constantly mutating into new variants that cause high infection rates, the development of prophylactic and therapeutic approaches remains a necessity to continue fighting mutated SARS-CoV-2 variants. In this study, ACE2-streptavidin fusion proteins expressed by recombinant DNA technology were anchored on biotinylated fluorescent polystyrene particles of various sizes ranging from 0.15 to 5 µm. The ACE2-tethered micro/nanoparticles were shown to prevent spike protein pseudotyped lentivirus entry into ACE2-expressing HEK293T cells. Compared to ACE2 in soluble form, micro-sized particles (2 and 5 µm) immobilized with ACE2 interfered more efficiently with viral attachment, entry, and the ensuing infection. Our results showed that particles functionalized with ACE2 could be used as efficient decoys to block the infection of SARS-CoV-2 strains.

2.
ACS Appl Nano Mater ; 5(10): 15942-15953, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-37552748

ABSTRACT

Since the angiotensin-converting enzyme 2 (ACE2) protein is abundant on the surface of respiratory cells in the lungs, it has been confirmed to be the entry-point receptor for the spike glycoprotein of SARS-CoV-2. As such, gold nanorods (AuNRs) functionalized with ACE2 ectodomain (ACE2ED) act not only as decoys for these viruses to keep them from binding with the ACE2-expressing cells but also as agents to ablate infectious virions through heat generated from AuNRs under near-infrared (NIR) laser irradiation. Using plasmid containing the SARS-CoV-2 spike protein gene (with a D614G mutation), spike protein pseudotyped viral particles with a lentiviral core and green fluorescent protein reporter were constructed and used for transfecting ACE2-expressing HEK293T cells. Since these viral particles behave like their coronavirus counterparts, they are the ideal surrogates of native virions for studying viral entry into host cells. Our results showed that, once the surrogate pseudoviruses with spike protein encounter ACE2ED-tethered AuNRs, these virions are entrapped, resulting in decreased viral infection to ACE2-expressing HEK293T cells. Moreover, the effect of photothermolysis created by ACE2ED-tagged AuNRs under 808-nm NIR laser irradiation for 5 min led to viral breakdown. In summary, ACE2ED-tethered AuNRs with dual functions (virus decoy and destruction) could have an intriguing advantage in the treatment of diseases involving rapidly mutating viral species such as SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL
...