Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Phys Eng Express ; 10(4)2024 May 14.
Article in English | MEDLINE | ID: mdl-38688251

ABSTRACT

Purpose.The aim of this study is to determine the planar dose distribution of irregularly-shaped electron beams at their maximum dose depth (zmax) using the modied lateral build-up ratio (LBR) and curve-fitting methods.Methods.Circular and irregular cutouts were created using Cerrobend alloy for a 14 × 14 cm2applicator. Percentage depth dose (PDD) at the standard source-surface-distance (SSD = 100 cm) and point dose at different SSD were measured for each cutout. Orthogonal profiles of the cutouts were measured atzmax. Data were collected for 6, 9, 12, and 15 MeV electron beam energies on a VERSA HDTMLINAC using the IBA Blue Phantom23D water phantom system. The planar dose distributions of the cutouts were also measured atzmaxin solid water using EDR2 films.Results.The measured PDD curves were normalized to a normalization depth (d0) of 1 mm. The lateral-buildup-ratio (LBR), lateral spread parameter (σR(z)), and effective SSD (SSDeff) for each cutout were calculated using the PDD of the open applicator as the reference field. The modified LBR method was then employed to calculate the planar dose distribution of the irregular cutouts within the field at least 5 mm from the edge. A simple curve-fitting model was developed based on the profile shapes of the circular cutouts around the field edge. This model was used to calculate the planar dose distribution of the irregular cutouts in the region from 3 mm outside to 5 mm inside the field edge. Finally, the calculated planar dose distribution was compared with the film measurement.Conclusions.The planar dose distribution of electron therapy for irregular cutouts atzmaxwas calculated using the improved LBR method and a simple curve-fitting model. The calculated profiles were within 3% of the measured values. The gamma passing rate with a 3%/3 mm and 10% dose threshold was more than 96%.


Subject(s)
Electrons , Phantoms, Imaging , Radiotherapy Dosage , Electrons/therapeutic use , Humans , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Water/chemistry , Monte Carlo Method
2.
J Appl Clin Med Phys ; 22(9): 73-81, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34272810

ABSTRACT

The American Association of Physicists in Medicine (AAPM) is a nonprofit professional society whose primary purposes are to advance the science, education, and professional practice of medical physics. The AAPM has more than 8000 members and is the principal organization of medical physicists in the United States. The AAPM will periodically define new practice guidelines for medical physics practice to help advance the science of medical physics and to improve the quality of service to patients throughout the United States. Existing medical physics practice guidelines will be reviewed for the purpose of revision or renewal, as appropriate, on their fifth anniversary or sooner. Each medical physics practice guideline represents a policy statement by the AAPM, has undergone a thorough consensus process in which it has been subjected to extensive review, and requires the approval of the Professional Council. The medical physics practice guidelines recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guidelines and technical standards by those entities not providing these services is not authorized.


Subject(s)
Radiation Oncology , Radiotherapy, Image-Guided , Health Physics , Humans , Societies , United States , X-Rays
3.
Med Phys ; 42(2): 735-40, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25652487

ABSTRACT

PURPOSE: To calculate the output factor (OPF) of any irregularly shaped electron beam at extended SSD. METHODS: Circular cutouts were prepared from 2.0 cm diameter to the maximum possible size for 15 × 15 applicator cone. In addition, two irregular cutouts were prepared. For each cutout, percentage depth dose (PDD) at the standard SSD and doses at different SSD values were measured using 6, 9, 12, and 16 MeV electron beam energies on a Varian 2100C LINAC and the distance at which the central axis electron fluence becomes independent of cutout size was determined. The measurements were repeated with an ELEKTA Synergy LINAC using 14 × 14 applicator cone and electron beam energies of 6, 9, 12, and 15 MeV. The PDD measurements were performed using a scanning system and two diodes-one for the signal and the other a stationary reference outside the tank. The doses of the circular cutouts at different SSDs were measured using PTW 0.125 cm(3) Semiflex ion-chamber and EDR2 films. The electron fluence was measured using EDR2 films. RESULTS: For each circular cutout, the lateral buildup ratio (LBR) was calculated from the measured PDD curve using the open applicator cone as the reference field. The effective SSD (SSDeff) of each circular cutout was calculated from the measured doses at different SSD values. Using the LBR value and the radius of the circular cutout, the corresponding lateral spread parameter [σR(z)] was calculated. Taking the cutout size dependence of σR(z) into account, the PDD curves of the irregularly shaped cutouts at the standard SSD were calculated. Using the calculated PDD curve of the irregularly shaped cutout along with the LBR and SSDeff values of the circular cutouts, the output factor of the irregularly shaped cutout at extended SSD was calculated. Finally, both the calculated PDD curves and output factor values were compared with the measured values. CONCLUSIONS: The improved LBR method has been generalized to calculate the output factor of electron therapy at extended SSD. The percentage difference between the calculated and the measured output factors of irregularly shaped cutouts in a clinical useful SSD region was within 2%. Similar results were obtained for all available electron energies of both Varian 2100C and ELEKTA Synergy machines.


Subject(s)
Electrons/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Particle Accelerators , Radiotherapy Dosage
5.
Med Phys ; 40(7): 071717, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23822421

ABSTRACT

PURPOSE: To calculate the percentage depth dose (PDD) of any irregularly shaped electron beam using a modified lateral build-up ratio (LBR) method. METHODS: Percentage depth dose curves were measured using 6, 9, 12, and 15 MeV electron beam energies for applicator cone sizes of 6 × 6, 10 × 10, 14 × 14, and 20 × 20 cm(2). Circular cutouts for each cone were prepared from 2.0 cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared. RESULTS: The LBR for each circular cutout was calculated from the measured PDD curve using the open field of the 14 × 14 cm(2) cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter [σR(z)] of the electron shower was calculated. Unlike the commonly accepted assumption that σR(z) is independent of cutout size, it is shown that its value increases linearly with circular cutout size (R). Using this characteristic of the lateral spread parameter, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves. CONCLUSIONS: In this research, it is shown that the lateral spread parameter σR(z) increases with cutout size. For radii of circular cutout sizes up to the equilibrium range of the electron beam, the increase of σR(z) with the cutout size is linear. The percentage difference of the calculated PDD curve from the measured PDD data for irregularly shaped cutouts was under 1.0% in the region between the surface and therapeutic range of the electron beam. Similar results were obtained for four electron beam energies (6, 9, 12, and 15 MeV).


Subject(s)
Electrons/therapeutic use , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Surface Properties
6.
J Appl Clin Med Phys ; 4(4): 386-9, 2003.
Article in English | MEDLINE | ID: mdl-14604431

ABSTRACT

We present results of investigations of the clinical significance of variations in the value of the 4-mm-collimator output factor, OF(4/18). Changes in treatment volume, dose-volume histograms (DVHs), and isodose distributions were studied, by varying OF(4/18) up to 20%. The variations were performed on a sample of clinical patient treatment plans for which the 4 mm collimator was used. Although smaller effects are noted for the prescription isodose line, greater dosimetric changes occur for higher dose regions within the target.


Subject(s)
Radiosurgery/instrumentation , Radiosurgery/trends , Arteriovenous Malformations/surgery , Astrocytoma/surgery , Central Nervous System Neoplasms/surgery , Humans , Meningeal Neoplasms/surgery , Meningioma/surgery , Neuroma, Acoustic/surgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...