Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arab J Sci Eng ; 48(1): 1-11, 2023.
Article in English | MEDLINE | ID: mdl-36185592

ABSTRACT

The initially developed vaccines were relying mostly on attenuation and inactivation of pathogens. The use of recombinant DNA technology allows the targeting of immune responses focused against a few protective antigens. The conventional recombination methods for generating vaccines are time-consuming, laborious, and less efficient. To overcome these limitations, a new precise CRISPR/Cas9 with high efficacy, specificity, and low-cost properties has solved a lot of current problems of recombinant vaccines that intrigued the inspiration for novel recombinant vaccine development. CRISPR/Cas9 system was discovered as a bacterial adaptive immune system. In the domain of virology, CRISPR/Cas9 is used to engineer the virus genome to understand the fundamentals of viral pathogenesis, gene therapy, and virus-host interactions. One step ahead CRISPR/Cass9 bypassed the vaccine to precisely engineer the B-cells to secrete the specific antibodies against deadly viral pathogens. There is a critical literature review gap especially in the use of CRISPR/Cas9 to generate recombinant vaccines against viral diseases and its prospective application to engineering the B-cells in immunocompromised people. This review heights the application of CRISPR/Cas9 compared to conventional approaches for the development of recombinant vaccine vectors, editing the genes of B-cells, and challenges that need to be overcome. The factors affecting CRISPR/Cas9-edited recombinant vaccines and prospects in the context of viral genome editing for the development of vaccines will be discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...