Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Rep ; 14(1): 6680, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509169

ABSTRACT

A large number of countries worldwide depend on the agriculture, as agriculture can assist in reducing poverty, raising the country's income, and improving the food security. However, the plan diseases usually affect food crops and hence play a significant role in the annual yield and economic losses in the agricultural sector. In general, plant diseases have historically been identified by humans using their eyes, where this approach is often inexact, time-consuming, and exhausting. Recently, the employment of machine learning and deep learning approaches have significantly improved the classification and recognition accuracy for several applications. Despite the CNN models offer high accuracy for plant disease detection and classification, however, the limited available data for training the CNN model affects seriously the classification accuracy. Therefore, in this paper, we designed a Cycle Generative Adversarial Network (CycleGAN) to overcome the limitations of over-fitting and the limited size of the available datasets. In addition, we developed an efficient plant disease classification approach, where we adopt the CycleGAN architecture in order to enhance the classification accuracy. The obtained results showed an average enhancement of 7% in the classification accuracy.


Subject(s)
Pyrus , Humans , Agriculture , Crops, Agricultural , Employment , Eye
2.
Plant Phenomics ; 2019: 7368761, 2019.
Article in English | MEDLINE | ID: mdl-33313535

ABSTRACT

Wheat is one of the major crops in the world, with a global demand expected to reach 850 million tons by 2050 that is clearly outpacing current supply. The continual pressure to sustain wheat yield due to the world's growing population under fluctuating climate conditions requires breeders to increase yield and yield stability across environments. We are working to integrate deep learning into field-based phenotypic analysis to assist breeders in this endeavour. We have utilised wheat images collected by distributed CropQuant phenotyping workstations deployed for multiyear field experiments of UK bread wheat varieties. Based on these image series, we have developed a deep-learning based analysis pipeline to segment spike regions from complicated backgrounds. As a first step towards robust measurement of key yield traits in the field, we present a promising approach that employ Fully Convolutional Network (FCN) to perform semantic segmentation of images to segment wheat spike regions. We also demonstrate the benefits of transfer learning through the use of parameters obtained from other image datasets. We found that the FCN architecture had achieved a Mean classification Accuracy (MA) >82% on validation data and >76% on test data and Mean Intersection over Union value (MIoU) >73% on validation data and and >64% on test datasets. Through this phenomics research, we trust our attempt is likely to form a sound foundation for extracting key yield-related traits such as spikes per unit area and spikelet number per spike, which can be used to assist yield-focused wheat breeding objectives in near future.

SELECTION OF CITATIONS
SEARCH DETAIL
...