Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Shock ; 61(1): 4-18, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37752080

ABSTRACT

ABSTRACT: Sepsis remains a major challenge that necessitates improved approaches to enhance patient outcomes. This study explored the potential of machine learning (ML) techniques to bridge the gap between clinical data and gene expression information to better predict and understand sepsis. We discuss the application of ML algorithms, including neural networks, deep learning, and ensemble methods, to address key evidence gaps and overcome the challenges in sepsis research. The lack of a clear definition of sepsis is highlighted as a major hurdle, but ML models offer a workaround by focusing on endpoint prediction. We emphasize the significance of gene transcript information and its use in ML models to provide insights into sepsis pathophysiology and biomarker identification. Temporal analysis and integration of gene expression data further enhance the accuracy and predictive capabilities of ML models for sepsis. Although challenges such as interpretability and bias exist, ML research offers exciting prospects for addressing critical clinical problems, improving sepsis management, and advancing precision medicine approaches. Collaborative efforts between clinicians and data scientists are essential for the successful implementation and translation of ML models into clinical practice. Machine learning has the potential to revolutionize our understanding of sepsis and significantly improve patient outcomes. Further research and collaboration between clinicians and data scientists are needed to fully understand the potential of ML in sepsis management.


Subject(s)
Physicians , Sepsis , Humans , Sepsis/genetics , Algorithms , Machine Learning , Gene Expression
2.
Arab J Sci Eng ; 48(2): 2347-2357, 2023.
Article in English | MEDLINE | ID: mdl-36164325

ABSTRACT

The healthcare ecosystem is migrating from legacy systems to the Internet of Things (IoT), resulting in a digital environment. This transformation has increased importance on demanding both secure and usable user authentication methods. Recently, a post-quantum fuzzy commitment scheme (PQFC) has been constructed as a reliable and efficient method of biometric template protection. This paper presents a new two-factor-based user authentication protocol for the IoT-enabled healthcare ecosystem in post-quantum computing environments using the PQFC scheme. The proposed protocol is proved to be secure using random oracle model. Furthermore, the functionality and security of the proposed protocol are analyzed, showing that memoryless-effortless, user anonymity, mutual authentication, and resistance to biometric templates tampering and stolen attacks, stolen smart card attack, privileged interior attack are fulfilled. The costs of storage requirement, computation, communication and storage are estimated. The results demonstrate that the proposed protocol is more efficient than Mukherjee et al., Chaudhary et al., and Gupta et al. protocols.

3.
Sci Rep ; 12(1): 8633, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35606367

ABSTRACT

Physical unclonable functions (PUF) are cryptographic primitives employed to generate true and intrinsic randomness which is critical for cryptographic and secure applications. Thus, the PUF output (response) has properties that can be utilized in building a true random number generator (TRNG) for security applications. The most popular PUF architectures are transistor-based and they focus on exploiting the uncontrollable process variations in conventional CMOS fabrication technology. Recent development in emerging technology such as memristor-based models provides an opportunity to achieve a robust and lightweight PUF architecture. Memristor-based PUF has proven to be more resilient to attacks such as hardware reverse engineering attacks. In this paper, we design a lightweight and low-cost memristor PUF and verify it against cryptographic randomness tests achieving a unique, reliable, irreversible random sequence output. The current research demonstrates the architecture of a low-cost, high endurance Cu/HfO[Formula: see text]Si memristor-based PUF (MR-PUF) which is compatible with advanced CMOS technologies. This paper explores the 15 NIST cryptographic randomness tests that have been applied to our Cu/HfO[Formula: see text]Si MR-PUF. Moreover, security properties such as uniformity, uniqueness, and repeatability of our MR-PUF have been tested in this paper and validated. Additionally, this paper explores the applicability of our MR-PUF on block ciphers to improve the randomness achieved within the encryption process. Our MR-PUF has been used on block ciphers to construct a TRNG cipher block that successfully passed the NIST tests. Additionally, this paper investigated MR-PUF within a new authenticated key exchange and mutual authentication protocol between the head-end system (HES) and smart meters (SM)s in an advanced metering infrastructure (AMI) for smartgrids. The authenticated key exchange protocol utilized within the AMI was verified in this paper to meet the essential security when it comes to randomness by successfully passing the NIST tests without a post-processing algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...