Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Breast Cancer Res Treat ; 204(3): 631-642, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38228924

ABSTRACT

PURPOSE: Breast cancer (BC) accounts for roughly 30% of new cancers diagnosed in women each year; thus, this cancer type represents a substantial burden for people and health care systems. Despite the existence of effective therapies to treat BC, drug resistance remains a problem and is a major cause of treatment failure. Therefore, new drugs and treatment regimens are urgently required to overcome resistance. Recent research indicates that inhibition of the endosomal recycling pathway, an intracellular membrane trafficking pathway that returns endocytosed proteins back to the plasma membrane, may be a promising strategy to downregulate clinically relevant cell surface proteins such as HER2 and HER3, and to overcome drug resistance. METHODS: To investigate the molecular mechanism of action of an endosomal recycling inhibitor (ERI) called primaquine, we performed a reverse-phase protein array (RPPA) assay using a HER2-positive breast cancer cell line. The RPPA findings were confirmed by Western blot and RT-qPCR in several BC cell lines. Novel drug combinations were tested by MTT cell viability and clonogenic assays. RESULTS: Among the signalling molecules downregulated by ERIs were estrogen receptor-alpha (ER-α) and androgen receptor. We confirmed this finding in other breast cancer cell lines and show that downregulation occurs at the transcriptional level. We also found that ERIs synergise with tamoxifen, a standard-of-care therapy for breast cancer. DISCUSSION: Our data suggest that combining ERIs with hormone receptor antagonists may enhance their efficacy and reduce the emergence of drug resistance.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism
2.
Invest New Drugs ; 42(1): 14-23, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37957513

ABSTRACT

Prostate cancer is the second most frequent cancer diagnosed in men, and accounts for one-fifth of cancer associated deaths worldwide. Despite the availability of effective prostate cancer therapies, if it is not cured by radical local treatment, progression to drug resistant metastatic prostate cancer is inevitable. Therefore, new drugs and treatment regimens are urgently required to overcome resistance. We have recently published research demonstrating that targeting the endosomal recycling pathway, a membrane transport pathway that recycles internalised cell surface proteins back to the plasma membrane, may be a novel means to downregulate clinically relevant cell surface proteins and potentially overcome drug resistance. A reverse phase protein array (RPPA) assay of breast cancer cells treated with an endosomal recycling inhibitor identified the androgen receptor (AR) as one of the top downregulated proteins. We confirmed that endosomal recycling inhibitors also downregulated AR in prostate cancer cells and show that this occurs at the transcriptional level. We also found that endosomal recycling inhibitors synergise with enzalutamide, a standard-of-care therapy for prostate cancer. Our data suggest that combining recycling inhibitors with hormone receptor antagonists may enhance their efficacy and reduce the emergence of drug resistance.


Subject(s)
Benzamides , Phenylthiohydantoin , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Drug Resistance, Neoplasm , Nitriles/pharmacology , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Membrane Proteins , Cell Line, Tumor , Androgen Antagonists/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...