Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 358: 142098, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677606

ABSTRACT

This research investigates the adsorption potential of chrysotile and lizardite, two minerals derived from chromite ore wastes, for the uptake of Methylene Blue (MB) dye from waste streams. The characterization of these minerals involves XRD, XRF, FTIR, and SEM. Results confirm the dominance of polymorphic magnesium silicate minerals, specifically chrysotile and lizardite, in the samples. The FTIR spectra reveal characteristic vibration bands confirming the presence of these minerals. The SEM analysis depicts irregular surfaces with broken and bent edges, suggesting favorable morphologies for adsorption. N2 adsorption-desorption isotherms indicate mesoporous structures with Type IV pores in both adsorbents. The Central Composite Design approach is employed to optimize MB adsorption conditions, revealing the significance of contact time, adsorbent mass, and initial MB concentration. The proposed models exhibit high significance, with F-values and low p-values indicating the importance of the studied factors. Experimental validation confirms the accuracy of the models, and the optimum conditions for MB adsorption are determined. The influence of solution acidity on MB uptake is investigated, showing a significant enhancement at higher pH values. Isothermal studies indicate Langmuir and Freundlich models as suitable descriptions for MB adsorption onto chrysotile and lizardite. The maximum adsorption capacities of MB for chrysotile and lizardite were found to be 352.97 and 254.85, respectively. Kinetic studies reveal that the pseudo-first-order model best describes the adsorption process. Thermodynamic analysis suggests an exothermic and spontaneous process. Statistical physics models further elucidate the monolayer nature of adsorption. Additionally, an artificial neural network is developed, exhibiting high predictive capability during training and testing stages. The reusability of chrysotile and lizardite is demonstrated through multiple regeneration cycles, maintaining substantial adsorption potential. Therefore, this research provides comprehensive insights into the adsorption characteristics of chrysotile and lizardite, emphasizing their potential as effiective and reusable sorbents for MB uptake from wastewater.


Subject(s)
Methylene Blue , Thermodynamics , Water Pollutants, Chemical , Adsorption , Methylene Blue/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Neural Networks, Computer , Hydrogen-Ion Concentration , Magnesium Silicates/chemistry
2.
Environ Sci Pollut Res Int ; 30(48): 105504-105521, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37715033

ABSTRACT

The main aim of this research is focused on the synthesis of schist/alginate composite (SC/AL) adsorbent and its utilization for the removal of Ni(II), Cu(II), and Cd(II) from waste streams using batch and column processes. The characterization of developed adsorbent was performed by X-ray fluorescence, X-ray diffraction, FTIR, and BET analyses. The most influential operating parameters (pH, contact time, temperature and initial adsorbate concentration) on the adsorption capacity of pollutants were examined to evaluate the performance of developed adsorbent. The kinetic and equilibrium adsorption results at pH 5.0 indicated that SC/AL composite had good adsorption capacity (qmax) for Ni(II), Cu(II), and Cd(II) estimated at 124.79 mg/g, 111.78 mg/g, and 119.78 mg/g, respectively. From the kinetic viewpoint, the good fit of pseudo-first-order kinetic model to the kinetic adsorption data indicated that dominant interaction of heavy metals with SC/AL composite was physisorption. The results of thermodynamic studies indicated that the adsorption of heavy metals onto SC/AL composite was endothermic and spontaneous in nature. The adsorption capacity of developed adsorbent could still reach relatively 85% of the original one after completing fifth cycle. Therefore, the reusability results of SC/AL composite were quite satisfied, making the developed adsorbent a commercially attractive and green method. Finally, in column studies, the effect of initial concentration of pollutants at pH 5.0 on the removal of heavy metal ions was investigated. The Thomas and Yoon-Nelson models provided a satisfactory explanation for the results of column data.


Subject(s)
Environmental Pollutants , Metals, Heavy , Water Pollutants, Chemical , Cadmium , Alginates , Adsorption , Metals, Heavy/chemistry , Water , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry
3.
Sci Rep ; 13(1): 167, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36599886

ABSTRACT

In this research, the solid-liquid adsorption systems for MSAC (PbFe2O4 spinel-activated carbon)-phenol and pristine activated carbon-phenol were scrutinized from the thermodynamics and statistical physics (sta-phy) viewpoints. Experimental results indicated that MSAC composite outperformed pristine AC for the uptake of phenol from waste streams. By increasing the process temperature, the amount of phenol adsorbed onto both adsorbents, MSAC composite and pristine AC, decreased. Thermodynamic evaluations for MSAC demonstrated the spontaneous and exothermic characteristics of the adsorption process, while positive values of ΔG for pristine AC indicated a non-spontaneous process of phenol adsorption in all temperatures. In a mechanistic investigation, statistical physics modeling was applied to explore the responsible mechanism for phenol adsorption onto the MSAC composite and pristine AC. The single-layer model with one energy was the best model to describe the experimental data for both adsorbents. The adsorption energies of phenol onto both adsorbents were relatively smaller than 20 kJ/mol, indicating physical interactions. By increasing temperature from 298 to 358 K, the value of the absorbed amount of phenol onto the MSAC composite and pristine AC at saturation (Qsat) decreased from 158.94 and 138.91 to 115.23 and 112.34 mg/g, respectively. Mechanistic studies confirm the significant role of metallic hydroxides in MSAC to facilitate the removal of phenol through a strong interaction with phenol molecules, as compared with pristine activated carbon.

4.
Environ Sci Pollut Res Int ; 30(9): 23870-23886, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36331730

ABSTRACT

Fixed-bed studies for phenol uptake from water were carried out using a novel Pb-Fe spinel-activated carbon adsorbent. A characterization phase including TGA, FTIR, SEM, and BET analyses was performed for the developed active carbon. In column studies, the influence of initial phenol concentration, column bed height, and the solution flow rate was investigated at natural pH. Adsorption of phenol onto Pb-Fe spinel-activated carbon composite and pristine activated carbon was analyzed in the form of breakthrough curves. Under optimum conditions, the maximum adsorption capacities for the magnetic active carbon composite and pristine activated carbon were found to be 113.95 and 102.61 mg/g, respectively. Results indicated that the adsorption capacity of adsorbent for all examined conditions was higher than that obtained for unmodified activated carbon because the composite contains additional metal hydroxides compared with the pristine activated carbon. The Yoon and Nelson, Thomas, and instantaneous local equilibrium (ILE) models were used to explain column data collected under different operating conditions. Finally, the results of the continuous adsorption process were explained successfully using the Yoon-Nelson and Thomas models. Thus, the phenol adsorption on Pb-Fe@MAC was a feasible operation to be performed in fixed-bed mode.


Subject(s)
Water Pollutants, Chemical , Water Purification , Phenol , Charcoal/chemistry , Lead , Adsorption , Water/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods
5.
Sci Rep ; 12(1): 10718, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739231

ABSTRACT

A novel lead ferrite-magnetic activated carbon (lead ferrite-MAC) composite was developed using the chemical co-precipitation method. Instrumental analyses such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) analysis were performed to characterize adsorbent. The uptake of phenol from aqueous solutions using the developed adsorbent was compared to that of pristine activated carbon. The maximum adsorption capacity of lead ferrite-MAC composite (145.708 mg/g) was more than that of pristine activated carbon (116.606 mg/g) due to the metal hydroxides coated on activated carbon since they improve the retention of phenol on the available active sites of adsorbent and create an additional electrostatic interaction with the phenol adsorbate. Regarding the high value of the coefficient of determination (R2) and adjusted determination coefficient (R2adj), coupled with the lower values of average relative error (ARE) and minimum squared error (MSE), it can be found that the isothermal data for the lead ferrite-MAC adsorbent were in agreement with the isotherm models of Redlich-Peterson and Langmuir. From the kinetic viewpoint, pseudo-second-order and linear driving force models explained the phenol adsorption data for both adsorbents. The reusability tests for lead ferrite-MAC composite revealed that after six cycles, 85% of the initial adsorption capacity was maintained. The developed adsorbent can be successfully applied to uptake phenol from aqueous solutions.


Subject(s)
Charcoal , Water Pollutants, Chemical , Adsorption , Charcoal/chemistry , Ferric Compounds , Kinetics , Magnetic Phenomena , Phenol/analysis , Spectroscopy, Fourier Transform Infrared , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...