Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 9(8): 1559-66, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10975577

ABSTRACT

Integral membrane proteins carry out some of the most important functions of living cells, yet relatively few details are known about their structures. This is due, in large part, to the difficulties associated with preparing membrane protein crystals suitable for X-ray diffraction analysis. Mechanistic studies of membrane protein crystallization may provide insights that will aid in determining future membrane protein structures. Accordingly, the solution behavior of the bacterial outer membrane protein OmpF porin was studied by static light scattering under conditions favorable for crystal growth. The second osmotic virial coefficient (B22) was found to be a predictor of the crystallization behavior of porin, as has previously been found for soluble proteins. Both tetragonal and trigonal porin crystals were found to form only within a narrow window of B22 values located at approximately -0.5 to -2 X 10(-4) mol mL g(-2), which is similar to the "crystallization slot" observed for soluble proteins. The B22 behavior of protein-free detergent micelles proved very similar to that of porin-detergent complexes, suggesting that the detergent's contribution dominates the behavior of protein-detergent complexes under crystallizing conditions. This observation implies that, for any given detergent, it may be possible to construct membrane protein crystallization screens of general utility by manipulating the solution properties so as to drive detergent B22 values into the crystallization slot. Such screens would limit the screening effort to the detergent systems most likely to yield crystals, thereby minimizing protein requirements and improving productivity.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Porins/chemistry , Crystallization , Crystallography , Detergents/chemistry , Dialysis , Escherichia coli/enzymology , Light , Micelles , Models, Molecular , Polyethylene Glycols/chemistry , Protein Conformation , Scattering, Radiation , Software , X-Ray Diffraction
2.
Circulation ; 100(11): 1161-8, 1999 Sep 14.
Article in English | MEDLINE | ID: mdl-10484535

ABSTRACT

BACKGROUND: Moderate elevations in plasma homocyst(e)ine concentrations are associated with atherosclerosis and hypertension. We tested the hypothesis that experimental perturbation of homocysteine levels produces resistance and conduit vessel endothelial dysfunction and that this occurs through increased oxidant stress. METHODS AND RESULTS: Oral administration of L-methionine (100 mg/kg) was used to induce moderate hyperhomocyst(e)inemia ( approximately 25 micromol/L) in healthy human subjects. Endothelial function of forearm resistance vessels was assessed by use of forearm vasodilatation to brachial artery administration of the endothelium-dependent dilator acetylcholine. Conduit vessel endothelial function was assessed with flow-mediated dilatation of the brachial artery. Forearm resistance vessel dilatation to acetylcholine was significantly impaired 7 hours after methionine (methionine, 477+/-82%; placebo, 673+/-110%; P=0.016). Methionine did not alter vasodilatation to nitroprusside and verapamil. Flow-mediated dilatation was significantly impaired 8 hours after methionine loading (0.3+/-2.7%) compared with placebo (8. 2+/-1.6%, P=0.01). Oral administration of the antioxidant ascorbic acid (2 g) prevented methionine-induced endothelial dysfunction in both conduit and resistance vessels (P=0.03). CONCLUSIONS: Experimentally increasing plasma homocyst(e)ine concentrations by methionine loading rapidly impairs both conduit and resistance vessel endothelial function in healthy humans. Endothelial dysfunction in conduit and resistance vessels may underlie the reported associations between homocysteine and atherosclerosis and hypertension. Increased oxidant stress appears to play a pathophysiological role in the deleterious endothelial effects of homocysteine.


Subject(s)
Endothelium, Vascular/physiopathology , Hyperhomocysteinemia/physiopathology , Oxidative Stress/physiology , Acetylcholine/pharmacology , Adult , Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Female , Homocysteine/blood , Humans , Hyperhomocysteinemia/chemically induced , Male , Methionine/administration & dosage , Nitroprusside/pharmacology , Vasodilation/physiology , Vasodilator Agents/pharmacology , Verapamil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...