Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 60(16): 4723-4731, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34143030

ABSTRACT

Adaptive optics (AO) compensation for imaging or coherent illumination of a remote object relies on accurate sensing of atmospheric aberrations. When a coherent beacon is projected onto the object to enable wavefront sensing, the reflected reference wave will exhibit random variation in phase and amplitude characteristics of laser speckle. In a Shack-Hartmann wavefront sensor (SHWFS) measurement, speckle effects cause fluctuations in the intensity of focal spots and errors in the position of their centroids relative to those expected from purely atmospheric phase aberrations. The resulting error in wavefront measurements negatively impacts the quality of atmospheric phase conjugation. This paper characterizes the effect of reflected laser speckle on the accuracy of SHWFS measurements for ground-to-space beam projection systems in weak turbulence conditions. We show via simulation that the speckle-induced error in centroiding depends on the ratio between beacon diameter and the diffraction-limited resolution of the lenslet and confirm these results with experimental data. We provide experimental validation that averaging of SHWFS lenslet spot intensities over speckle realizations converges to the incoherent intensity as expected. We further show that the effects of shot noise and speckle noise add in quadrature, simplifying noise analysis. Finally, we characterize the effect of temporal averaging under typical conditions of target motion and integration time. This work provides a straightforward set of relations that can help investigators more accurately estimate the required integration time for wavefront sensing in the presence of laser speckle.

2.
Micromachines (Basel) ; 10(6)2019 May 31.
Article in English | MEDLINE | ID: mdl-31159209

ABSTRACT

Micro-Electro-Mechanical Systems (MEMS) Deformable Mirrors (DMs) enable precise wavefront control for optical systems. This technology can be used to meet the extreme wavefront control requirements for high contrast imaging of exoplanets with coronagraph instruments. MEMS DM technology is being demonstrated and developed in preparation for future exoplanet high contrast imaging space telescopes, including the Wide Field Infrared Survey Telescope (WFIRST) mission which supported the development of a 2040 actuator MEMS DM. In this paper, we discuss ground testing results and several projects which demonstrate the operation of MEMS DMs in the space environment. The missions include the Planet Imaging Concept Testbed Using a Recoverable Experiment (PICTURE) sounding rocket (launched 2011), the Planet Imaging Coronagraphic Technology Using a Reconfigurable Experimental Base (PICTURE-B) sounding rocket (launched 2015), the Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) high altitude balloon (expected launch 2019), the High Contrast Imaging Balloon System (HiCIBaS) high altitude balloon (launched 2018), and the Deformable Mirror Demonstration Mission (DeMi) CubeSat mission (expected launch late 2019). We summarize results from the previously flown missions and objectives for the missions that are next on the pad. PICTURE had technical difficulties with the sounding rocket telemetry system. PICTURE-B demonstrated functionality at >100 km altitude after the payload experienced 12-g RMS (Vehicle Level 2) test and sounding rocket launch loads. The PICTURE-C balloon aims to demonstrate 10 - 7 contrast using a vector vortex coronagraph, image plane wavefront sensor, and a 952 actuator MEMS DM. The HiClBaS flight experienced a DM cabling issue, but the 37-segment hexagonal piston-tip-tilt DM is operational post-flight. The DeMi mission aims to demonstrate wavefront control to a precision of less than 100 nm RMS in space with a 140 actuator MEMS DM.

SELECTION OF CITATIONS
SEARCH DETAIL
...